
RD-R12i 894 DESIGN-AND IMPLEMENTATION OF A PERSONAL DATABASE 1/2
MANAGEMENT SY9TEM4U) NAVAL POSTGRADUATE SCHOOL MONTEREY
CA P LJONES JUN 82

UNCLASSIFIED F/O 9/2, N



- , -.. . . . . . ._,: . . , - .- -..- ', '_ ...-... 7 '- . . . .-_ _._________-___.-.______--__-_

-lll i I

MICROCOPY RESOLUTION TEST CHART[
;7NOWIA. S7jAu V S1&AOAOI-;95)- A r



NAVAL POSTGRADUATE SCHOOL
Monterey, California

A THESIS
DESIGN AND IMPLEMENTATION

OF A
PERSONAL DATABASE MANAGEMENT SYSTEM

by

Peter L. Jones

June 1982

Thesis Advisor: Dushan, Z. Sadal

0... Approved for public release; distribution unlimited.

_ A

82 11 30 071



69CURITY CLASSIVICATION or THIS P~sO "mn Dol Zalmor_________________

REPORT DOCUMENTATION PAGE BZOZCMLE!GF~
muff~R a.NGU SOVT ACCESSION NO 5. NEIPESS CATrALOG NUMSEN

4. TITL~t (80... T lyee ammneoo. a g,0ovED
* Master's Thesis

Design and Implementation of a Personal Database Jn,18
Management System 6. *SPe"ONWNG OW~ 1191004T Poullsel

7. AUTWO~j(.) 4. CONTRACTORm GRA84T Ns,;MSEN(a

Peter L. Jones

a 10- PROGRAM CLaMN1T. PROjUCT. T &SI
4. ~POnING @NOANIZAVION AME Alto £00055 AMIZA 4 WOOK urn, "U"Defgs

Naval Postgraduate School
Monterey, California 93940

11. CONTOOLLINO OPFIC9 NAN1E Alto £00055 1a. MCPORY DAT9

Nava Potgrduat ScoolJune, 1982
NavalPostgaduae Schol 1. NUIAO90OP PAGES

Monterey, California 9394016

I...O.TUIG GECYNA AOOESqIU dtftwm. M FC7u.U'Qe@Iee S~jo . SUCUNITY CL.ASS. rot thi ,n)~

*- ~ k SIICATIONi DOWNGRADING

IS6. WtSTNISqUION STATEMEGNT (01 me ftearfj

Approved for public release; distribution unlimited.

17. OSYNISUION0 STATEMENT (of lb. 060wn tm Mffff N 62. it 01010110 *M X4110eu

IW* SUPPLEMENTANY MOTU$

Microcomputer, Hand-held computer, Database Management System, Non-volatile
Memory, FORT'H.

* 2~~0. ASSYNACT (CrneiM 4A -W0 6090e It 00GE I &V..in mit 1rbpMs ibe

The Personal Database Management System is a hardware and software system
designed to support people's memory and recall processes. It is a sm~ll,
low power, and inexpensive microcomputer system which employs EEPW)M and
CMOS technology. The design is based upon how people manage their personal
information, which was found to be different from the ways conventional
computerized systems manage information.;

DO, ~ 1473 EDITIONe OP Nov 66 is GISOLETIR
S1 N 0 10 2-014461 IUCUSITY CILAIGIICATIO111OF VNISGE (Usa W,, 32-



Approved for public release; distribution unlimited.

Design and Impeettn

Personal ofDatabase lauagemoat System

by

Peter L. Jones
Captain, United States parine Corps
B. .,Uni versity of Washi.ngton, 1915

Submitted in partialfui.filment of the
requ irements for t ao ogre or

MASTER 0F SCIENCE INI CORPOTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 198

Author: - --

Approved by:_ _
Thesis Advisor[ Second Reader

Chairma n,, Dep e f Computer Science

Dean of Information and Policy Sciences

2



..... ,." L L.a . . .,,, -. ., - - - ... ... . ' .'.'. ..- ' . .° '. - . . - -. - ""- "

& BSflACT

The Personal Database management System is a hardware
and software system designed to support people's memory and

recall processes. It is a small, low power, and inexpensive

microcomputer system which employs E2 PROH and CHOS tech-
nology. The design is based upon how people manage their

personal information, which was found to be different from

the ways conventional computerized systems manage

information.

3



6- -... ..0 . . ." . ." -- . .-

TABLE OF CONTENTS

I. INTRODUCTION . . . . . ........... . . . 11

II. PERSONAL DATABASE CHARACTERISTICS . . . . . . . . 14
Ao BACKGROUND. 14. . .. . . .l

B. GENERAL CHARACTERISTICS . . . . . . . . 17
1. Files . . . . . ... . . . . . 19

2. Records . . . . . .... *19

3. Fields . .... . . . . . . .. . . 21

C. DESIGN IMPLICATIONS .... . . . . . .... 21

III. HIGH LEVEL PDBHS SYSTEM DESCRIPTION . . . . . . . 24

A. SOFTWARE . ............... . . . 24

1. The Calculator Function . . . . . . . . . 24

2. The Database Management Function ..... 25

B. DATA STRUCTURES .. * ....... . .... 26

1. Dictionaries .. * . ..... . . . . 26

2. Files ..... . . .* 0 * a . . 27

3. Logical Records . . . . . . . . . . . . . 27

5. Keys . . . . . . . . . . .... . . . . 28C 5.ARWR es. .. . . .. .. . .. . . . . . . . 28
C. HARDWiARE .. . . . . . .... 28

1. Erasable Programmable Read-Only Memory . . 28

2. Random Access Memory .... . 66.. . 30

3. Electrically Erasable Programmable

Read-Only Memory . . . . . . . . ..... 30

4. Liquid Crystal Display and Keyboard . . . 30

5. Central Processing Unit . . . . . . . . . 30

6. RS232 Serial I,9 Port . . . . . . * . . . 31

IT. DETAILED PDBBS SYSTEM DESCRIPTION . . . . . . . . 32

A. CONVENTIONS AND NOTATION . . . . . . .... 32

B. PHYSICAL MEMORY AND I/O P3RTS . . . . . . . . 33

41



1. Hardware ana I/O Ports .......... 33

2. Data Structures . . . . . . . . . . . . . 36

C. VIRTUAL MEMORY AND CONTROL PORTS . . . . . . . 37
1. Hardvare.. . .. .. . .... 37

2. Organization and Data Structures ..... 42

V. TE DEVICE DESCRIPTION ......... ...... 56

A. THE HARDWARE.... ............ 56

1. The Enclosure 56

2. The Display ..... 58

3. The Keyboard . . . . . . . . . . . . . . . 58

B. THE SOFTWARE ................ . 61

I. The Calculator. ......... . . . .64
2. The Database ...... 4....

VI. SYSTEM SECURITY DESIGN .............. 75

A. HARDWARE SECURITY MEASURES . . . . . . . . . . 77

B. SOFTWARE SECURITY MEASURES . . . . . . . .. . 78

1. Straight-through Code . . . . . . . . . . 78

2. Maintenance of System Parameters and

Tables in EPROM ...... . . . . . . .80
3. Keys . . . . . . . .•... 81

4. Execution Vectors ............ 84

APPENDIX A: THE LANGUAGE FORTH ... .......... 6

Ae WORDS . . . . . . . . . . . . ........ 86

B. SYSTEM DATA STRUCTURES . o . . o . . . o. . . 87

C. THE MECHANICS OF FORTH. . . . * . . .e.. . 90

APPENDIX B: STUDY STATISTICS . . . . . . . . . .... . 94

A. BACKGROUND . . , . • • . . . . .. . . . . . . 94

B. METHOD OF ANALYSIS... . . ....... .95
C. RESULTS OF THE ANALYSIS . . . . o . . . . . . 97

1. General Statistics.... . . . . . . . . 97

2. Wordd Length . . . . .... . ...... 97

5



3. Char, Digit, and Punctuation ...... 105

4. Initial Letters 104

LIS T OF REPRNCZs ....... . . ......... 111

BIBLIOGRAPHY .. . . . .11.. .. .. 3
INITIAL DISTRIBUTION LIST ........ . ...... 115

I6

6



LIST OF TABLES

I. BNF Definition of Uvord and Wordd . . . . . . . 33
II. Virtual Memory write-cycle Algorithm .... . . 44

III. Record Retrieval ........ . ....... 66

IV. File and Key Creation . ...... . . 69

V. File, Key, and Record Deletion . . . . . . . . . 70
VI. Record Creation ................ 72

VII. FORTH-79 Required Word Set. . ........ 88

VIII. General Statistics - Before . . . . . . . . . . 98

IX. General Statistics- After . . . . . . . . . * . 98

1. Wordd Length Distribution . o . . . . . . . . . 99

XI. Char Statistics- Before ... ......... 100

XII. Char Statistics - After . . . . . . . . . . . . 101

XIII. Digit Statistics - Before . . . . . . . . . . . 102

XIV. Digit Statistics - After . . . . . . . . . . . . 102

XV. Punctuation Statistics ...... . . . . . . . 103

XVI. Comparison vith Standard English . ....... 105

XVII. Initial Letters of iordds - Before . . . . . . . 107

XVIII. Initial Letters of Wordds - After . . . . . . . 109

7



LIST OF FIGUIS

3.1 PDBDS Hardware Configuration . . . . . . . . . . 29

4s.1 PDBHS Physical Reory Hap *. .. .6.35

4.2 2816 EEPROK Configuration . . . ° . 38

4.3 Status Port Flags (IN 9FH. . .. . 41

14.4 Control Port Flags (OUT 9FHi . . . . . . . . . . 43

4.5 Database Physical Record Structure . . . . . . . 50

4.6 Structure of a DB Dictionary Entry . . . . . . . 52

4.7 DB Dictionary World Look-up ......... . 54

5.1 PDBBS Vocabulary Structure .......... 63

&.1 Standard FORTH Remory Hap . . . . . . . . . . . 89

1.2 Structure of a PDBNS Colon Definition ..... 92

8



DI SCLAINER

Some terms used in this thesis are registered trademarks

of commercial products. Rather than attempt to cite each

individual occurrence of a trademark, all registered trade-
marks appearing in this thesis are listed belov folloving

the firs or individual holding the trademark.

Zilog, Incorporated, Cupertino, %California:

Z80

FORTH, Incorporated, Hermosa Beach, California:

F ORT H

Digital Research, Pacific Grove, California:
C P/M

National Semiconductor, Santa Clara, California:

uSC800

XICOR, Incorporated, Milpitas, California:
IOVRAA Non-volatile Static RAN

Greenvich Instruments Limited, Greenvich, London, UK:

Instant BOB

9



ACKNO WLBDGENTS

The author would like to thank the following people

without whose help much of this thesis would not have been

pos si ble.

Mr. Walter L. Landaker, of the Department of Computer

science Laboratory, who helped in the hardware implementa-
tion by doing much of the bread-boarding and managed to get
the LCD (which had been received without the promised manual

and hardware interface) operational.

Mr. Hichael A. Williams, also of the Laboratory, who
helped, not only in the hardware implementation, but also in
the hardware design. It was he who proposed interleaving

the 22PROB which decreased the average write-time by 400
percent. He also designed the "smart" ports.

as. Kathy Yamanaka, of the Department of Computer

Science, who went out of her way to help by "greasing the

skids" in the Supply Department to ensure that the materials
required by this research were received in a timely fashion.

10



. 11R23222-0o

One of the factors which limits human performance is the
limited capacity of human memory. Bemory is commonly

considered to be divided into two parts: short-term and
long-term. Short-term memory is that part which we can
consciously access; it may be compared to the primary store

of a computer. It is characterized by rapid access and

volatility. Long-term memory is analogous to secondary

storage in that it is more permanent in nature than short-

term memory and it requires more time and effort to record
information to and retrieve information from [1].

Short-term memory is a major limiting factor on human
performance because it is the memory which is consciously
accessible and thus our working memory, and it is very

- limited in its capacity. This memory holds units of infor-

mation for up to thirty seconds. That period may be
.! extended through repetition and rehearsal. The size of

short-term memory is approximately seven units of informa-
tion (plus or minus two). The nature of these units is a

function of experience and training. For example, someone

familiar with English may find it easy to remember seven
English words but difficult to remember seven Chinese ideo-
grams. Thus it is easy to see that the information

processinq capacity of humans can be easily overloaded.

Long term memory limits performance because of the time and
effort associated with fetches from and stores to it [1].

The idea behind a Personal Database management System

(PDBNS) is to provide an extension to both short-term memory

and long-term memory. A good PDBS should provide its users
with means of storing information and later retrieving it

that are faster and more efficient than ordinary human

11



means. Long-term memory can be extended by allowing users

to easily store information which they find difficult to
memorize. Numerical information such as phone numbers, safe
combinations, and part numbers are examples of information
which are usually expensive in the amount of effort required

to ensure that they are not soon forgotten. Short-term

memory can be extended by providing users vith a way to
relieve the burden upon its capacity. Instead of having to

remember a piece of information or a key (or cue) to
retrieving the desired information, a PDBBS can accept the
key as input and retrieve the desired information. Once the
key has been entered into the system, it may be forgotten,

freeing a portion of short-term memory for more information.
Also, retrieved information need not be memorized if the
PDBHS records it in a manner which allows it to be easily
accessed. For example, information recorded on a piece of
paper or on a display screen need not be memorized if it is
within easy reach.

What should be the characteristics and what are the

requirements of a Personal Database management System?
Because it is designed for the storage and retrieval of

2p-2132 information, it is a single-user system. In order
to be useful to a broad range of people, it should permit
interaction at different levels, depending on the sophisti-

cation of the user. Novice users will be easily discouraged
and see very little benefit if a system appears to be illog-
ical and complicated. Also, because of the personal nature
of the information in the database, the system should
provide security to that information. Finally, in order to
be acceptable, it should be small, light-weight, and

inexpensive.
This last requirement was taken to indicate that such a

system should be built using a battery-driven micropro-
cessor. Current microprocessor technology provides more

12



computer power than is needed strictly for a PDBMS. So the

design presented here incorporates the following additional
capabilities: 1) the ability to be ased as a calculator, 2)
the ability to be programmed by the user, and 3) the ability
to be connected into networks or to other devices via an

RS232 serial interface.
The PDBKS is programmed in a non-standard version of

FORTH. The particular one used here is neither fig-FORTH
nor FORTH-79, the two most prevalent versions of FORTH.
However, the basis for the language used is 8080 fig-FORTH,
version 1.3, which was partially modified to conform vith

the FORTH-79 standards C2]. Further modifications were made
to this based upon hardware characteristics, and the sugges-
tions and ideas of various members of FORTH Interest Group.

In spite of this, when referred to in this thesis, the
language used in the PDBMS will be called FORTH. One major
distinction should be made, however, the PDBMS's base vocab-
ulary is called ROOT, not FOOTH.

13



.". *IQNA& DL2A"I QlAUZCT STI

A. BACKGROUND

The largest part of the information presented in this

chapter was derived from detailed study of four personal

address books (Appendix B contains detailed statistics from
this study). Address books were used as a basis for the

preliminary investigation of personal databases because they
were found to be more structured, standardized, and easily

computerized than other personal databases (e.g., shopping

lists, appointment calendars, and things-to-do lists).

The people (some of whom worked with computers daily)

interviewed during the study indicated that the maintenance

of personal databases is not analogous to management of

databases by computer. Indeed, the ways in which a database

management system (DBMS) is structured, maintained, and used

is very different from the way people manage their personal

information. The results of the author's studies and inter-

views seem to indicate that the essential difference between
DBMSs and personal information management is the number of
"system" users. It is this difference that is the apparent

cause of most all of the other differences.

Because DBASs are normally organizational tools with

many users, records, fields, attribute values, query

languages, keys, etc., they must be standardized. Because

organizational data is entered and retrieved by many

different individuals and thus without standardization, it

would be difficult for one person to know of information

i entered into the system by another, much less retrieve it.

On the other hand, personal information is shared by only a

few people, if any. An important point here is that in such

14



a situation where there is only one user, that user kno'Rs

(or knew at one time) j,1 ot the information in the system
because ] entered it. People record and maintain personal
information in an auxiliary store in order to relieve then-

selves of some of the burdens of recall and recognition.

Because long-term memory is generally considered to be
permanent (1], the data recorded in auxiliary stores need
not be a verbatim copy of the information which is to be
retrieved later. Truly personal information needs only to
contain enough context-specific cues to enable a person to
reconstruct or recall the structure of their semantic

memory.

"The Recognition of Previous Encounters," by George
Handler [3] describes semantic structures as an organization
of memory (referred to as a "familiarity variable"). These

structures represent the familiarity of events (and of the
entities which are part of an event), and are unique to each
particular event. Further, they are independent of the

context in which the event occurs or in which it is
embedded. Two sets of independent processes operate upon
semantic structures: intra-event processes which are
referred to as "integration," and inter-event processes
which relate an event to others called "elaboration."

andler's hypothesis is that recognition is related to inte-
gration, which is developed through attentive repetition
(rote learning). Recall is related to elaboration, which is
strengthened by the establishment of relational links
between the target event and other representations in

memoryl. Handler does not describe how integration and

'Recognption is the process 9f going from a familiar
event to the context which caused tao event to be remem-
bered. Reall is the opposite process, that is, remembering
an event from its context. Wen a .ersoq attempts t
rem ember where ht knows afamliir face from he is

loying roognit n. Roca. i what a person a tem ts to2o"nhen oles hiwife to a to get something 9n te
way home, but has forgotten what.

15



elaboration manifest themselves except in an abstract way.

They must involve the establishment of cues which act as

keys to semantic structures whether they might be direct (as

one would expect in the case of integration) or indirect (as

. might be the case for elaboration) a.cess. It is these cues

which must be available to a person in order to retrieve the

desired events and entities. It is this that sakes personal

databases different from DBMSs.

Even though only the minimum number of cues need be

saved in order to retrieve information, the author's studies

revealed that usually more than the minimum required cues

are recorded. For example, there is usually no need to

record one's parents' city and state of residence, yet every

address book contained this, as well as other unnecessary

information. This is probably due in part to the fact that

address books are not always personal databases, sometimes

they are family documents. Appointment calendars appeared

to be the tersest of all the personal databases studied. An.

example entry for march 10 might be, "Rebecca 11:308 which

is a reminder that Rebecca has an appointment with Dr.

Feeney at the Pediatric Group, 698 Cass Street, 11:30 A.M.,

on March 10th.

In order to establish a common ground for comparison,

the following terms will be used throughout this thesis.

orsonA aaka ~ninZisma IjDIIS~l12PH : ta computer
vase e 1 -IVatign. The

iorsat- on *anaqed bthia system is organized into
Res containing ecor s.

* :a a manually maintained file ofrmy not-ssteatlca.Blecause these databases aZ9
orsa2 y not systesatically sa ed as a group, there is

n 1193S analoous to a PDNMS. ach MDB s soparate and
distct, from a11 other SDBs* an address book, appoint-sent book, letc. are each MDRS.

relationship betvoen records. In NDB is a
1 jecodin a $1le or* o1 the se foraat andMaed by th tle grouping into the same fi0s

!! 16



* an entry in a file. In an address book eagh
Saoq. r aorganizat ign d .ed to t e

"adress gok le," a new record is aid

*• lld : an entry in a record. In qeneral, all records
n, same file have the same fields lan& thus struc-

tue). In an address book, the fields are usually
called "name," "street6" "city, state, and zip code,U
and "telephone number.

B. G ENEAL CHARACTER ISTICS

As stated before, people do not ;enerally view personal

data as a database in the same sense as information in a
computerized database. Each KDB tends to be viewed as a

distinct entity, unrelated to any other KDB. Thus there is

no notion of a database management Izgts (DBMS) since the

"DBs are not managed together as a group. As a result there
is often redundant information in MDBs when they are viewed
as a group. For example an address book and an appointment

calendar probably both contain redundant information about
an individual's insurance agent, realtor, dentist, etc.
Even though the possibility for joins and Cartesian products

exists, they are not only not performed, but the concepts
behind these operations are apparently incomprehensible to

the layman.

The existence of separate DBE's or files can be intui-
tively explained by three reasons. First, and most
obviously, is that the amount of effort required to maintain
even a partially integrated database manually costs more
than the value gained by having such a database.
aintaining such a database requires the establishment of

all possible desired relationships before the implementation
of the database followed by the maintenance of complicated

and troublesome cross-indexes. Less effort is required to
check one's appointment book for appointaents and then go to
one's address book to obtain the phone number to call in
order to confirm an appointment; or if the requirement for a

17



confirmation was foreseen, to simply duplicate the phone

number in the appointment book.

The second reason is more subtle and might be related to

the ideas expressed in reference E3]. Even though the same

entity (person, organization, etc.) may be included in more

than one file, the different occurrences may represent

different views of that same entity; that is, file entries

are context-sensitive. when comparing address book records

to appointment calendar records, it is very common to find

that the address book entry for an individua/l is more formal

than an appointment book entry for the same individual. For

example "Richard Elton" might appear as "Richard and Say

Elton" in an address book, "Rich" in an appointment book,

and "Lt. Elton" in a personal note. This context-sensitive

nature of entries seems to indicate that integrating a

personal database is such more difficult than in the case of

traditional DBKSs.

The last reason is that inconsistencies between personal

IDBs (ioe., files) due to replication (redundancy) of data

is easily managed. This is not only because of the indi-

vidual and aggregate file sizes, but also because of the

nature of the data. The issue of size is obvious; the

important characteristic of the data which aids in solving

the problem of inconsistency is that the keys used for

access are closely related, if not identical, to cues used

to reconstruct semantic structures. For example, when a

person receives a change to his friend Patts phone number,

it will probably prompt him to sake a change in his

address/phone book. What changed was not the entity "Pat"

but just a value of one of the entity's attributes. So for

the most part, the cues (which are context-free) associated

with "Pat" remain unchanged. There is a good possibility

that all occurrences of the old phone number will not be

updated. Later when he comes across an occurrence of the

18



old number, it will elicit many of the same cues related to

"Pat" as would the address book entry. Chances are that he

will remember that the number was changed and was recorded

in his address/phone book. It will be then that the incon-
sistency will be corrected, if it is at all. Perhaps people

rely upon this and intentionally lo not make any great

effort to seek out inconsistencies.

1.ZI1u

Hanually maintained files are apparently organized

in two ways: sequential access and direct-keyed access.

MDBs which are direct-key accessed ire normally recorded in

a commercially procured file or document. Examples of these
files are address books which are designed to be keyed on

the first letter of a surname in the "name" field or

appointment books which are designed to be keyed on a date.

Sequentially maintained files are commonly kept on less

rigidly structured media such as notapads, chalk boards, or

scraps of paper. Information is usually entered chronologi-

cally. Shopping lists, things-to-do lists, etc., are

examples of sequentially organized files. Another distinc-

tion between the two file types is the time-value of the

information stored in thee. Indexed files usually contain

information which is to be retained for a longer period of

time than that contained in sequential files. It was not

uncommon to find address book entries which were more than

ten years old.

2. 3isgija

With the exception of personal notes, records within

any particular file tended to be fairly uniformly formatted.

There is generally a core of fields which contain a value in

almost all records. Hovever many records contained addi-

tional fields beyond the "core-fields." In the case of

19



address books these fields were inserted into the pre-

printed record formats by writing them vertically, placing

them in an unused, unrelated field, or placing then into

another record. The "core-fields" in address books are:

"name" "street#" "city," "state," "zip code," "area code,"

and "telephone exchange and number." Typical additional

- fields contain information such as:

* Accqunt, godel, Serial, Policy, and Social SecurityNumbers.

* Additional Phone lumbers (e.q., "home," "work"marketing department," "service, "account inquiries,-
etc.).

* Birthdays and anniversaries.

e Additional Names (e.g., children's names, points of
contact).

e Cards and Favors Sent and Received.

* Additional miscellaneous Information (e.g.. When in
Seattle," "Neihbors in fonterey," or " 6 ncle Bob'sbrother-in-law"y.

In the case of address books, record deletion

appears to be an unpredictable event and probably a function

of the medium upon which it is recorded. Bound address

books contain many more entries whose validity are question-

able. Hany of these appear to be retained not only because

they were entered in ink, thereby making deletion a messy

affair, but for sentimental reasons. any of the very old
entries are for high school and childhood friends. Address

books which permit easy deletion of records appear to

contain fewer old entries, but because deletions are not

recorded it is not easy to attribute this effect to the ease

of deletions.

20



3. Pield&

Even though the fields' types and numbers appear to

be fairly standardized, the contents of the fields is not.

Fields appear to be variable length with no restriction on
content. Graphic, non-alphanumeric symbols such as hearts,

check-marks, and "happy faces" are not uncommon. Some files
contain indicators of the validity of the information in the

field (e.g., "?" or "as of Dec 81"). Abbreviations are not
consistently used in the same file; for example, one address

book examined contained all of the following entries:

Street St. Str.

Avenue Ave.

Virginia Virg. Va VA

Mr. & Mrs. Mr/Mrs Sr. and Mrs.

C. DESIGN IMPLICATIOIS

It appears obvious that a PDBSS and a DBMS are not the

same. As such, it is reasonable to construct a PDBHS

differently from a DBMS. Because a PDBHS is used as an aid

to recall contexts from memory, and the cues to these are

unique to each context [3], not only should the system have
no restrictions such as fixed fiell lengths and attribute

values, but additionally it should:

e Alloy the user to use Ma word as a key.

e Be able to recognize and compensate for misspelled keys.

e Be able to take into account keys vhich are synonyms and
rifer to the sane entity for examples se. the desr.rp-
t on of tildr a above). Also it sh uld have the abilfy

io scrnae e homon y ms ich appear to be thesame but refer to different attr1hates or entities (for
example, "CT," as an abbreviat ion for "Court" in a
street address versus "CT," as an abbreviation for
"Connecticut").

21



When interviewing laymen, it was found that they easily
understand the concepts of "file" and "record," but not
"field." This suggests that perhaps people conceptualize an

entity as a synergistic sum of its attributes rather than as

a relationship between attributes. Thus a record is the
smallest logical unit vith which people normally deal

because it, as a whole, contains the cues necessary to

reconstruct semantic structures. The number of fields in a
record may be related to an individual's ability to "inte-

grate" the corresponding semantic structure (3].
Because a PDBNS is an aid to an individual's recall, it

should faithfully preserve information entered and retrieve
it by logical means. If text compression or compaction2 is
employed it must be transparent to the user. Logical

retrieval means that if the user feels that he has given
sufficient information to specify the desired data, the

system should be able to either retrieve the data or give a

comprehensible reason why it could not be retrieved.

A PDBHS should be "user friendly" and require very

little effort on the part of the user. This means that

persons who have no need or desire to understand computers,

DBSs, etc., should be able to use the system. Further,

file, record, and field formats should be easily specified

without the need for a plethora of technical details. Entry

and retrieval of data should also be fast and easy. Most

people who are not specifi-ally trained on omputers tend to

have much less tolerance for poorly engineered computer

systems or ones requiring a technical expertise than do the

ant2 9 cmprssonand comgact ion fnvolveb eoi drdIn
ant noraton fro ext s that t can be stor d us 4g
veweresources than i the original text had been stored.

The fference between the two is that an exact copy of the
riginal text is r eoverable after compression, whereas itI ISa not from compaction.

22V



system's designers or computer scientists (4]. Above all, a

computerized system must be better in every way than the

corresponding manual system E13.

23



III. fiZ LulL I JU 12M DESoZU2J

A. SOFTWARE

When the user first receives the PDBMS, he sees only two

functions: a calculator and a database management system.

As the user learns how the system works, it is possible for
his to expand the system incrementally until eventually he
can reprogram a large portion of the system itself in FORTH

and/or assembly language.
Many of the keys on the PDBMS's keyboard are program-

mable. They are initially used to allow the user to enter
commands by simply pushing a key. Instead of typing

"RECORD" when using the database management function, the

user needs only to push the "SHIFT" and "R" keys and the
system will enter the word "RECORD" for him.

The calculator which the user initially receives is

much like any other calculator. rwo major ways in which

this function differs from most standard calculators is that

a series of arithmetic operations may be entered at once,

and that the user may create and use variables. Unlike most

calculators, the action of most of the keys on the POBS is
simply to enter textual data into the system. The PDBMS

does not interpret most of the input until the ENTER key is
K pressed. So the following two key sequences have the same

effect, i.e., to add two to three and obtain five.

2(4



2 2

<enter> <space>

<enter> <space>

3 3
<enter> <space>

= -_

<enter> <enter>

Like in FORTRAN, variables are created when they are
first used. If a word or a character is found in the input

which the calculator cannot recognize and it is to the right
of an equal sign, it assumes that it is a variable declara-

tion and creates one. If an unrecognizable word or
character is encountered to the left of an equal sign, an

error condition is signalled.

2. US 2AI 2 _gj ement Zuni_2_

The database management function allows the user to

create files and records, delete files and records, retrieve
records, and use keys (i.e., passworls) to seal records and

other keys as a means of providing data security. The user

is not required to deal directly with the technicalities of
database data structures, he only aeeds to know that files
are a collection of records, all having the same format.
Files appear to the user to be separate and disjointed,

similar to MDBs. The procedure for creating a file requires
only that the user specify the file's name and the names of

the fields within the records of the file. The user is led

through the process of file creation and record retrieval by
system prompts.

Records may be retrieved by using a= word (or group

of words) contained within them. The only restriction on

this is that the user must specify which field is to be

25



searched for the target word(s). rhis restriction should

not seem unnatural to the user but, rather, necessary.

Because any word is a possible key attribute, the user must

be able to specify the context of the target word. By spec-
ifying the field name with queries, the user is able to

retrieve a record using Mr. York's last name without also

retrieving all of the records containing "New York."

B. DATA STRUCTURES

The PDBMS uses some data structures which might be

considered unusual when compared to other database applica-

tions. Some of these are characteristic of FORTH and others

are used because of the nature of the system.

1. LtLies

Two different dictionary structures are used in the

PDBHS. One dictionary is that which is associated with

FORTH. The second is conceptually more like a dictionary,

as a layman might think. A FORTH diction& is simply a

linked list of FORTH definitions. The definitions are main-
tained in chronological order b! thel.: time of creation.

These definitions typically describe the following basic
FORTH word-types: colon definitions, constants, variables,
user variables, and v(cabularies. Colon definitions are

FORTH definitions which are defined in terms of previously

created definitions, similar to procedures and functions in

other languages. Vocabularies are "sub-dictionaries" and

are used to delimit the scope of definitions.

The other dictionary is called the DB dictionary and
it is used to store the words entered and contained in the

database. Words are entered into the dictionary and
looked-up by hashing to a linked list using the first letter

or digit of the target word, and then traversing the list,

26

F



which is alphabetically sequenced. Punctuation is not

stored in the DB dictionary.

2. ZFile

Files are completely inverted. They contain only

administrative data, and indices and pointers into the DB

dictionary. Information which is retrieved from the data-

base is reconstructed a word at a time by looking words up

in the dictionary (punctuation is stored directly in the

database in its &SCII format). Memory for files, the DB

dictionary, and sealed keys (discussed later) are allocated

from a heap so that none of these data structures occupy

contiguous memory. A file is defined as a FORTH vocabulary

and its definition contains pointers to the first and last

records in the file. Records are maintained as a circular,

doubly linked list. The fields are defined as FORTH

constants in their respective file's vocabulary. Their
value is an ID number which is used to relate the fields in

the database to the names assigned to them by the user.

3. IgJ, gqcjrs

To the user a record appears to be a collection of

information related to a particular entity. The fields help

to organize the data by grouping it. The logical record

itself is variable in length. The first set of bytes in a

record contain the record's access descriptor, which is

variable in length. This is followed by the links (or
pointers) to the previous and next records in the file.

Following these pointers are the fields which are fixed in

number (as determined in the file's definition), but are

each variable in length. Fields are separated by an

end-of-field (BOF) marker. Because records contain a fixed

number of fields, the last BOF serves as a end-of-record

mar kor.

27



4. 1it9L45

Fields are a continuous string of bytes which repre-

sent the data contained in the field. Punctuation appears
in its ASCII format (one character per byte). Words are

represented by two bytes, the first contains the word's
initial letter (or digit) which is used to hash into the DB

dictionary. the second byte is a number used to identify
the particular member of the linked list hashed to repre-

senting the target word.

5. Keys

Keys may be thought of as passwords which are used

to secure records, FORTH screens, and other keys (called

sealed keys). These objects (i.e., records, screens, and

keys) all have access descriptor fields which contain infor-

mation about what keys are necessary to access the

particular object. Keys allow the user to construct fairly

complex access mechanisms.

C. HRDUARE

Figure 3. 1 is a simple picture of the layout of the
PDBNS's hardware. The system makes extensive use of CHOS
technology so that it can be battery driven. There are six

major components in the system.

1. Erasabl =n aaiu J199 M emoryf

Erasable programmable read-only memory (EPRON) occu-

pies the system's low memory and contains the PDBBS's
operating system. There are 16K bytes of EPROB in the

system. As its nane implies, its contents cannot be altered
by the user.

28



o.--3> ~ ~ ~ -. ~ ---. - -

INCI

Kiuey3.1ardBN a~a.Cniuai

2RO

-- .. .LC



2. Rando & MA..1e2ruj

Random access memory (Bil) is used by the user as

his workspace. System parameters and data structures which
change according to the runtine environment are also main-
tained in RAN. There are 16K bytes of RAN.

3. 1Lt0L2ic1i Ink1a SAIU 2 eut22z Meor

Electrically erasable programmable read-only memory

(EEPROS or E2PROK) serves as the system's secondary storage.
The unique characteristic of EsPROM is that it can be erased

(ie.,, written into) under software control, as RAN can, but
it is non-volatile (i.e., its contents are not lost when the
power is turned off). Part of the ExPRON is not accessable
to the user because it is used by the system for ERPROM
memory management, and database management and storage.

What is not used by the system is available to the user as
FORTH screens.

'4. Z4iguj± QLLUaj~ fluaa iz E2kgr

The liquid crystal display (LCD) serves as the
system's console. It contains two rows of 20 characters.

It is attached directly to the system's bus and any data
written into memory beginning at aldress CO00B appears on

the LCD. The keyboard provides the means by which the user

can directly input data into the system. It is connected to
the system's bus via a parallel I/O port.

5. Q=WJ ~a~uR1

The PDRS uses an ISC800 microprocessor operating at

a clock rate of I 3z. This is a CROS microprocessor which
is downwardly compatible with the Z8D. It was chosen as the

system's CPU because of its low power consumption and the

availability of software. The slow speed is not an issue

30



with this system because of the naturally slow nature of

human-camp uter communicatio ns.

6.U2J ua L

This port allaws the user to interface his -system

with other systems.

31



7 71-

IT. UZLU R lios 11211 21I1PlI

A. CONVENTIONS AND NOTATION

The nature of words in FORTH does not lend then to be

referred to by enclosing them in quotes, so instead they

will appear in upper-case boldface. However, because

boldface punctuation is often hard to distinguish from

standard text punctuation, the following eight FORTH words

will be enclosed in braces:

* , I ?

Additionally FORTH words composed entirely of strings of

these characters will be enclosed in braces (for example,

W')).

Finally, to avoid ambiguity, the folloving conventions

will be used when using the three words "key," "word," and

"dictionary." 9hen there is a possibility of confusing the

FORTH meaning of "word" (described below) and the accepted

computer term "word" (i.e., two bytes or 16 bits on the 8080

and Z80 microcomputers), the former "word" will be called a
"word" or a "FORTH word," whereas the latter "word" will not

be used, instead .two bytes" will be used. Adding further

possibilities for confusion is the third meaning of "word."

This third meaning is the usual English connotation of
"word" and these "words" are data in the PDBNS. The ubiqui-

tous FORTH response, "OK," and words entered by the user as

responses to the system prompts and as data to be included

into the database are "words" in this third class. Data

words of this type will be called "uwords." Because uwords

entered into the database may be altered before they are

entered into the database dictionary, the words which reside

32



TABLE I
BIP Definition of 9word and Wordd

uvord :: <vordd><punctuation>I<punctuation>

punctuation ::= "Ii/l'1-1'<space>l*i(I)1:1 ... etc.

space :-20HI
wordd ::= <vordd><char>I<char>

char ::= 11213141516171819101AIBI ... IXIYIZ

in the database dictionary will be referred to as "vordds."

Table I shows the BYP definitions of both uvord and vordd.

In order to distinguish between a "key" on the keyboard

and a "Key" which is used as a password to SEAL and UNSEAL

data objects, the latter "Key" will always begin with a

capital "K." Finally, because many of the system data

structures are not only maintained as FORTH dictionaries

(also referred to as vocabularies); but vordds are stored in

a data structure which is not a FORTH dictionary but which
may also be rightfully called a dictionary, the following

convention will be followed. when the possibility of ambi-
guity may exist, the dictionary being referred to will be
prefaced by its name (e.g., root dictionary, DE dictionary,
etc.) .

B. PHTSICAL BEOR! LID I/O PORTS

1. AL413LI AMA =& 12=Z

Physical memory is that memory in which FORTH
programs execute. This memory lies entirely within the
user's address space. The PDBMS's physical memory consists

33



of a little more than 32K bytes (see Figure 4.1). The lover

memory (00005 to 3FFFH) is EPROB, and the high memory (4000H

to 7FFH) is RA. additionally there are 256 bytes of

* memory located at addresses C00K through COFYH; the first

40 bytes of these 256 bytes represent the 2 lines of 20

characters on the liquid crystal display (LCD). The

contents of these memory locations are interpreted as ASCII
encoded data and are mirrored on the LCD. Thus the LCD is

directly addressable via the system's bus. Finally, memory

locations FF005 to FFFFR comprise the virtual EzPRON window.

When a segment is accessed from E2PROM by writing its

segment number to the segment register and "powering up" the

iZPROH, it appears at these addresses and may be read from

and written to. When RZPROH power is off these addresses

are invalid.

There are two ports which are directly associated

with the user's address space and accessible to him. One

port is a read-only port used to receive data from the

keyboard (it is envisioned that the keyboard will eventually

be tied directly to the system's bus). This port is located

at FBH. The other port is a UART port configured for an

RS232 serial interface and is located at PAR.

Finally three locations are set aside as jump

vectors. These are predetermined by the NSC800 hardware in

interrupt mode 1 which mimics the Z80. The cold boot vector

is located at 001. The non-saskable interrupt (NMI) Jump

vector is found at 668. This interrupt is generated by two

conditions: whenever the system is "turned off" by the user

and whenever the system is reset (via the reset button).

Because of the slow nature of the 22PRON, it may be possible

for the user to turn the power off or reset the system

before a write-cycle involving a large block of data has

been completed. The virtual memory manager is the ultimate

recipient of VaIs. Upon receiving one, it waits for the

34



[[PO. FOin OtCtt'cary

VFFMH

Syte ver feoles

Systle Loaded Screen Oeffnttfon

OP User Dfctfonwry

OP.d PON

t
Paaeter StaCk

Ineut Mesge luf fer

75*p Return SAc

User verfeeuoa

*leabate Suffears

Invelto Adornsg Sae*e

C...

CUIF LCO VIedw

FTV IUPl OU Windos

Viqar* .11 PDBKS Physical Reory Map.

35

ILrrl



write-cycle to be completed and then sets bits 1, 0, and 4

of the control port accordingly. After doing that, a jump

to wars boot is executed. Setting bit 4 to one vhen the

power switch is in the on position has no effect, so the

sane interrupt handling routine correctly handles both

interrupt sources. Ten seconds after an 181 generated by the

power-off condition, the hardware automatically shuts itself

off, if it is still on at that time. The third location is

38H which contains the maskable interrupt (HI) vector. Both

the keyboard and 32PRO generate interrupts which vector

here; the device requiring service is determined by reading

the status register (described below).

!.

Figure 4.1 shows the allocation of physical memory

to data structures in the PDBMS. It varies from the config-

uration in Figure A. 1 only in that it has data buffers and

pointer buffers. These buffers share memory with the buffer

blocks. Block an4 data buffers are not used concurrently so

they do not occupy the buffer area at the same time3 . The

data buffers are used for encoding and decoding individual

database records. Records are read into the buffers as they

appear in .2PROM (less key ID numbers and administrative

pointers) and then are decoded into their ASCII representa-

tion which is placed into the current record buffer and the

LCD window. Probably only a portion of the record fits into

the 40 character LCD. rhe first two bytes of each data

buffer contain the resident record's virtual pointer (FFFFH

indicates an empty buffer).

E2ven if the PDBMS is designe4 so that it LOADs defini-
tions from screens during, execution of database operations,
there is no problem. This is because the block buffers are
not used during a LOAD; the E2PROS is simply read directly
without using a buffer.

36



The pointer buffers serve several purposes. During

retrieval operations buffer number one holds the pointers to

records to which the user is authorized access and which
have satisfied all query conditions processed so far. The

second buffer holds pointers to records to which the user is
authorized access and which satisfy the current query condi-
tion being processed. After the completion of the

processing of each query condition the intersection or union
of the two buffers (depending upon the query) of the two

buffers is placed into buffer one.

C. VIRTUAL ENOR! AID CONTROL PORTS

1. HaLdv!M3

In the PDBNS, E2PRO1 is used as secondary storage.

A total of 8K bytes of 22PRON is included and it is

segmented into 32 segments, each 256 bytes in size.
Segments (analogous to FORTH blocks) are further divided

into physical records 16 bytes in size. Figure 4.2 shows
the bus interface of the Intel 2815 EZPRON chips. As in

standard FORTH, the user and user programs deal with phys-

ical addresses only. The user can only refer to virtual

memory by using screen numbers. However, some PDBES words
use two byte virtual addresses to ac-ess physical records in
virtual memory. Only assembly language coded words

("low-level" words) can directly fetch and store bytes in
ZEPRON via the window.

PDBES virtual addresses consist of two bytes. One
byte contains a segment number and the other a physical
record number within the segment. Because only four bits

are needed to designate a physical record, if it were tech-
nically feasible the -stem could accommodate 512K bytes of

V EXPRO.

37



Isti Me

J I -
*A L atlc h o tr l er

riqure 4.2 2816 Z*PROU Cafigaration.

38



Only 15 of the 16 bits are used for virtual

addresses. The high bit (bit 7 of the Most Significant

Byte-HSB) is used to differentiate virtual from phy3ical

addresses in E2PROM and RAN. Virtual addresses which move

from E2PROH to RAN and vice versa must pass through low

level FORTH words which ensure RAN and ERPROM virtual

addresses never get mixed in with each other. EZPROM

virtual addresses have their high bit set to zero while RAN

virtual addresses have their high bit set to one. Thus

virtual addresses appear to be out-of-range references

within the domain in which they occur. For example, if an

address referenced inside an E2PROM segment is less than

8000H, then it is a virtual address to another segment.

Intra-segment addresses are always greater than or equal to

FFOO (all of which have a high bit of one). This means

that, as in standard FORTH, "programs" cannot be executed

directly from secondary storage but must be LOADed first.

This allows all code field addresses (CFA) to be interpreted

as physical addresses, whether they occur in RAN, EPROM, or

E2PROff, so there is no problem associated with storing

constants and variables in E2PROM. Care must be exercised

to ensure that LCD window addresses are never used in the

same RAN context as RAN virtual addresses since they would

be indistinguishable from each other.

The E2 PROM can be read in 450 usec, however it

requires 20 msec' to write one byte (all of the bytes on

each chip may be erased in one 10 msec operation).

Additionally the 2816 must be strobed with a 21 volt pulse

during the write process. This means that E2PROM cannot be

*Intel literature states that their E2PROM re uires 10
usec per write, which is true. However, in order o ensure
tat the data is properly recorded, the addrqssed byte
should contain FF5 before it is written into if a w r.te
reluares a zeroed bit to be chanqed to one. Thus writinq
inol ves two write operations: one to set the target byte tZ
FFH, and a second to write the desired value.

39



treated the same as RAN. Other non-volatile memories were

considered for this design, such as NOVRAM and Instant RON.

Both of these alternatives can be treated almost as if they

were RAM, however they were judged unsuitable. VOVRAM was

not found to be a feasible choice because of its small size.

The largest IOVRAN chip contains only 256 bytes, thus 8K of

NOVRIS cannot be battery powered because of the large number

of chips that would be required. Instant RON was also found

to be undesirable because it contains its own battery power.

The on-chip battery is ;uaranteed for three years, and this

is hardly suitable for a permanent database. Currently

available hand-held computers use concepts similar to

Instant ROM, they use CHOS memories which are constantly

refreshed, even when they are turned "off."

The ExPROM and the PDBMS is controlled through three

control ports. One port, the segment register, is used to

select the desired segment. This port is located at F8H and

is write-only. The second port is the status register. It

is located at F9 and it is read-only; it reflects the
system's current status. Figure 4.3 shows the status port's

configuration. Complementing the status register is the
control register which is a write-only port located at 19H.

The control register is used to effect system changes. This
port is described in Figure 4 4. rhese ports, as well as

all other ports, are "smart" ports in that they only accept

instructions from code being executel from EPROM. It does
this by checking the program counter which the RCS800 places

on the address bus prior to fetching an opcode fetch. If

the A15 and/or A14 lines of the address bus are high the

next instruction is ignored. E2PROM power and write-power

are turned on and off by setting bits 0 and 1 accordingly.

Whenever either of these bits is set to one, bit 7 of the

status register is set to zero. After the chips have been

powered-up, bit 7 of the status register is set to one, so

40



Bits Flag MeanIngs Soot-up Values

6 @1 GPW ortte-pao to off0

LaE~tntwry" menIstn
5 0

$I No EPSN InW'oriut wwtne

4 wt,. we"/N

3 ns~~f/S

is I.o'bgs Itorrumt gending

2 0:N WS~ nftui'

Is No ekcgOWd IaW'tM WI

to VAST recolver not r n/

Is VAST tteafter row

0 to VART ttewmttrtW rot /

Figare 4.3 States Port Flags (11 9PH) .

dl1



is bit 6 or 5 (depending upon whether bit 0 or 1 of the

control register had been set). Additionally, whenever bit

7 is set to one (except during a cold boot of the system),

an HI is generated. When bit 7 of the control register is

set to one, bit 7 of the status register goes to zero. When

the Z2PROH write-cycle has been completed, bit 7 goes high

and an MI is generated.

Changes in bits 0 and 1 of the status register do

not generate interrupts, but when bit 2 goes high (indi-

cating keyboard input) an MI is generated. Reading the

status register resets bit 2 to zero.
Notice from Figure 4.2 that the four 2816 chips are

interleaved so that all addresses equal to zero, mod four,

are on the first chip (i.e., those addresses whose last

hexadecimal digits are 0, 4, 8, or C). Those equal to one,

mod four, are on the second chip, etc. This arrangement

facilitates fast writing of blocks of data to PZPROM because

four contiguous bytes may be written simultaneously. Thus

in the best case (when four contiguous bytes are written)

the average write-time per byte is approximately 5 msec and

an entire segment can be written in 1.25 seconds. Actually

more time is required, but the additional time is minor when

compared to the gross nature of the E'PROH write-time. The

additional time involves reading and comparing the contents
of the E2PRON to the appropriate buffer's contents (data or

block buffer). The entire write-cycle algorithm is shown in

Table II.
~2. oQaLMajAjg Wn 21A tructug

The 8K bytes of EZPROM are divided into two types of

segments: system segments and block (or screen) segments.r. System segments arb owned by the system and cannot be

directly accessed by the user or his programs. Block

segments are those which contain screens, in the usual FORTH

42



Bits Bit Set Meanings

1: Stw% ffM3M wt-cc0e
7

#I No effect

;' lsS~w'% Pt Mftt ool~t

Is ?wn Matm of (Upamt be off f irt)

4
11Is fetofft

3 ht ue

Is1 T PUi utte-veltiml an1

Is Twit aD "W ut-y easof

o Turn 11 VW 9I911 off

Figure 4.4 Control Port Flags (OUT 9F1).

43



T ABLE II

Virtial Remory Write-cycle Algorithm

J - STARTOFSEGIIENT;

REPEAT UNTIL NOHORZ_B TTES;

DO I - J TO J.3;

READ ISPRON_BYTE(I);

IF BUFFEB_BYTE(I) 0 EZPROMBTTE(I) THEN DO;

IF BUFFERBYTE(I) & EZPROM_BYTE(I) # 0 THEN

EZPRORBYTE(I) = FFH;

ERPROH_BYTE(I) BUPFZR_BTE (I);

END DO;

END DO;

CONTROLPORTBITS(7) * 1;

LOW POWER HALT; /0 WAIT FOR INTERRUPT S/

DO I = J TO J+3;

READ E8PROEBTTE(I);

IF BUFFER_BYTE(I) 0 E'PROMBYTE(I) THEN

SIGkL(EPROW R1TEZRROR);

END DO;j
3 j 3 * 4;

END REPEAT;

sense, and are available to the user. Blocks are allocated

sequentially in a round-robin fashion by the memory manager.

This means that the next segment to be allocated is the next
higher unallocated segment after the last allocated segment.

When the 32nd segment is reached, illocation begins again

from the first segment not initially assigned to the system

(i.e., when the software was placed into the system). This

scheme is used in an attempt to more uniformly distribute

'4



the ERPRO use. If a "lowest available segment algorithm"

were used, there would be a higher probability that portion

of ERPROM assigned to the low numbered segments might "burn

out" (ERPROK is limited to 10,000 write operations to each
individual byte).

a. System Segments

System segments are those which are used by the

PDBHS for virtual memory management data structures and the
database. The user cannot directly access these segments

because any segment allocated to the system is not placed in
the block number dictionary. System routines address these

segments directly (i.e., they "know" the physical segment

numbers whereas the user knows only virtual block or screen
numbers). At least four segments are dedicated to the

system; the system and the user compete for the remaining

segments (less system message screens) which are allocated
on a first-come, first-serve basis. additional system
segments (beyond the dedicated four) are used to accommodate
the expanding database. Because the database resides in
system segments, the user cannot see their physical struc-

ture; he is limited to viewing it through the PDBMS. The

first four segments are structured as described below.
(0). =aa n WIS- This segment contains a

collection of system parameters and tables. For example,

most of the cold boat parameters are loaded from here. Also

located here is the vocabulary table.
(2). 121 Auk- =2RU. Security in the PDBMS

is provided in part by Keys. These Keys are used to seal

records, blocks, and other Keys. These Keys are maintained

in a linked list dictionary as a separate VOCABULARY. The

Key vocabulary definition is located in EPRON. The code

pointer of each Key points to the run-tie code for CONSTAIT
which is located at docon. Thus when the Key is executed,

'45



it returns the contents of its two byte parameter field

address (PFA). The value held in tha PFA may have two mean-

ings. If the value returned is less than 128, then it is

the Key's identification number (ID). If it is greater than
1280 then the value returned is a virtual pointer to a

sealed record containing the Key's ID number. The Key ID

value, FPS is reserved for the null Key, while the value OOH

is reserved for the system's Key. Also the value FEB is
used as a substitute ID for the ID value of deleted Keys'

IDs in access descriptors. The use of Keys is discussed in

greater detail in Chapter 7I. The Key vocabulary, besides
containing Keys, contains words; these words are stored in

EPRON.

(3). =2& Miabra Di _aiu. The segment

containing this is divided into three parts. Four bytes are
set aside as the segment allocation table, four bytes are

used as the segment allocation sequencer table, and the rest
of the segment is used as a vocabulary for virtual block
numbers. Each bit in the segment allocation table repre-
sents a segment. If a bit is set to one, the corresponding

segment has been allocated. The sequencer table has only
one bit set, the one corresponding to the last segment allo-

cat ed.

The virtual block numbers are maintained

as a FORTH vocabulary, as are the Keys. also like the Key

vocabulary, the definition of the block number vocabulary is

located in EPROB. However, unlike the Keys, virtual block

numbers are fixed length name, one byte constants. This
allows virtual numbers to be assigned to all of the origi-
nally unallocated segments. This Limits block numbers to

four characters in length. This dictionary is static and
always contains 28 entries. Entries are removed from the
dictionary by blanking out their virtual number (i.e., the

entry's name field) and setting the smudge bit so they will

46



not be found. When a virtual block number is entered by the

user, the entire dictionary is searched. For example the

following keyboard entries would trigger searches of the
dictionary for "1" and "25" respectively.

1 LIST

25 LOAD

If "1" had not been found in the dictionary a block buffer

(located in physical memory) would have been allocated to
virtual block "1." The virtual number "1" would not be

entered into the block number dictionary until it was
written to RZPROH. If "25" had not been found the usual

FORTH error condition would have been raised.

(4)- The 2.atai §_qu t_. This block is
broken into two parts. The first contains a jump table into

the DB dictionary. There is one jump vector for each prin-
table ASCII character allowed by the system (a maximum of

64). A characteros jump vector is hashed to using the
following equation on the character's hexidecimal value

(called "char").

Location of jump vector *

((char- 32) * 2) + FF00H

If the vector is equal to zero, then the character is punc-

tuation (as described in Table I). Punctuation is not

stored in the DB dictionary. If the vector is equal to

FFFH (uninitialized ERPROH), then there are currently no
vordds in the dictionary starting with that letter.

Otherwise the vector is the virtual address of the first
physical record in an alphabetical linked list of wordds

beginning with that letter. The next four bytes of this
segment contain a bit map of the segments. Like the segment

47



allocation table, a bit is set to one if the corresponding

segment belongs to the database.

The second half of this database segment

is used for the beginning of the file and field name vocabu-

lary. Field entries are simply FORTH constants which return
their field ID number (0 to 255). File entries are modified

FORTH vocabulary definitions (they contain five extra bytes

used to store pointers to the first and last records in the
file, and a field count). The fiell names are entries into

the "file vocabulary" to which they belong. This allows

FORGET to be used to delete files. Of course FORGET is not

sufficient by itself; the virtual semory allocated to the

forgotten entries must be turned back to the system.

Because of the nature of record entries in the PDBMS, fields
cannot be individually forgotten. As with the Key vocabu-

lary, the file vocabulary definition, as well as some other

words, reside in EPROM.

When information is added to the database,
it expands in three ways. First the file and field vocabu-

lary grows to accommodate new file and field definitions.

This dictionary may spill into additional segments.

Allowing this dictionary to exist in more than one segment

creates some problems which must be specifically addressed

by the interpreter/compiler. Off-segment references can
only address 16-bit physical records, so entries of this

type cannot be positioned in a "format-free" manner. Thus

entries in this vocabulary are all placed in memory taking

the physical record into consideration (i.e., beginning on a

physical record boundary). A benefit of this is that the

entries may be mixed into the same segments with the DB

entries, file logical records, and sealed Keys.

The database itself may be considered a

totally inverted file system. Records contain only PDBMS

information and pointers to dictionary entries of vordds

48



I

which appear in the record. Figure 4.5 shows a typical

entry in the PDBMS. The system knows how many fields are in

the currently open file, so it uses the last field's
end-of-field (EOF) as the end of record marker (EOR) . The
EOF is the same character as the null Key, making FFH (blank

E2PROM) a general system end-of-data marker. when a logical
record is broken over a physical record boundary, the last
two bytes of the physical record contain a pointer to the

next physical record.

Fields are strings of ASCII characters

followed by an entry ID number. The ASCII letters are the

initial letter of the wordds (i.e., transformed uwords)
originally entered into the record by the user. The letters

are used to hash to the jump vector table on the first
segment of the database. DB dictionary entries are main-
tained in an alphabetical linked list. The correct wordd

corresponding to the uword entered into the record is found
by matching the ID number following the letter used as input
to the hash function to the ID number of a wordd on the

linked list hashed to. Punctuation is not followed by an ID
number and the record decoding routines "know" not to look
for an ID number in the record because punctuation jump
vectors are equal to zero.

Figure 4.6 shows a typical dictionary

entry. This structure is an expanded and modified version

of the one used in Craig language translators (5]. The
entries are designed to take advantage of the alphabetical
nature of English language dictionaries. The first byte
contains a zero and is ignored when traversing the DB
dictionary during a wordd look-up. It is placed there to

rprevent an accidental retrieval by non-dictionary routines

which always treat the first byte as a Key. The second

byte, the copy byte, contains the number of leading charac-
ters in the current wordd which match the leading characters

49



Key 10

Key 10

FFH (Null Key)

Prevtous Record Link

Next Record Link

1st Character
1st Field

Wordd ID

Rest of 1st Field

F0

FFH (End of Field)

lst character
2nd Field

Wordd ID

Fiqure 4.5 Database Physical Record Stracture.

50



in the previous wordd on the linked list. The link bytes

contain a pointer to the next wordd in the linked list. The

add byte contains a number, which when added to the

"copy byte + 1" character of the previous wordd yields the

correct "copy byte + 1" character of the current wordd. The

bytes following the add byte contain the ASCII characters of

the current wordd after the "copy byte + 1" character. The

last character's high bit is set to one as an end of string

delimiter. If there are no characters following the
"copy byte + 1" character then the byte following the add
byte contains FFH (which translates to an ASCII delete).

The wordd ID byte contains the wordd's ID number. This is

used when decoding records. Figure 4.6 shows how the DB

entries for "FORGET" and "FORTH" would appear if they were
consecutive entries and "FORGET" was the first "F wordd."
Following the last unique character is a linked list of

field ID numbers with pointers to records containing the
field associated with its corresponding field ID. These

field numbers and pointers are used in retrieval operations.
Records are retrieved by specifying field names and uwords.
Obviously punctuation cannot be used for retrieval since

only wordds are stored in the DI dictionary.

Figure 4.7 shows how the dictionary is

traversed to find the desired wordd. Uwords are reassembled

in the PAD by making the changes indicated by the copy byte,

add byte, and unique characters as the list is traversed.

That is, when the DB dictionary linked list is entered, the
first wordd in the list is copied out into the PAD. If this

is the not target wordd, then the second -tatry in the linked
list is moved to. Using the information in the copy byte,
the add byte, and the unique characters, the second wordd in

the list is constructed. In moving from "FORGET" to "FORTH"

as shown in Figure 4.6, "FORGET" would be written into the
PAD as the first wordd in the linked list of "F wordds."

51



~w ise Flela *.ece*
so eelLIM A" Jtinfiqw ctes I

bye te to ID O=ne

Typtcal 09 OtC?.onary Entry

SO 0 0 FORGET werm Lit r fc4 1 ...
0 I pofnter

I Vrdd Ilet Field Record

1313 1 H to m a 'Inter

*FORGET* A "FORTH" aS 0 Otctionary Entrfes

Figure 4.6 Structure of a DB Dictionary Entry.

52



When the search continued past "FOR3ET" because it was not

the target wordd, the first three letters in the PID would
be left because the copy byte of the second entry is 3.

Then 13 would be added to the fourth letter (G) because that

is the contents of the add byte. This would change the
fourth letter from a "G" to a "T." Then the fifth letter,

and any subsequent ones, would be replaced by the the unique
characters (in this case "T" would be overwritten with an

"H"). At this point the P&D contains the wordd "FORTH."
Once a wordd has been placed into the

dictionary, its first physical record is never returned to

the system to be reallocated. If all instances of a wordd
are removed from the database, the high bit of the copy byte
is set to one. Subsequent searches of the dictionary will
not "see" a wordd if its copy byte contains a negative
number (two's complement). Because the dictionary is a
linked list, this memory may be reused in the same list by
reattaching it at a different point in the list. When the
first record is reused, the new world placed in it uses the
ID number assigned to the first world to use the record.

This is done to make ID assignment easier and to stave off
the possibility of running out of ID numbers5 .  Physical

records other than the first may be returned to the system
when a wordd is deleted.

In segments acquired by the system to
accommodate database expansion, only 15 physical records are

used for the database. The first re:ord (recorl 0) contains
administrative information such as a record allocation map

for the segment.

Mhe mafi m ID number is 2$5. The statistics in
Aw endx B indce that, even in an aggregate of four
aaress books, the maximum number of unique wordds is not
that large.

53



Physfcal Record

(Sstm y e 10 byeeefk .

keyl I

I

-- -

got Copy Worho Add

Ftirs "0 O Ofcleonwy Entry

(System b I ...
key) "to 10 v Ote

WHO 08 entry wfth same 10 as phystcal record

figure 4.7 DB Dictionary Eordd Look-up.

54



b. Screen Segments

These segments belong to the user for use as

FORTH screens. A screen segment is divided into two parts.

The first physical record contains the screen's access
descriptor. The rest of the records contain the part of the

segment the user sees as a screen. A screen consists of 16

rovs of 15 characters. This is much smaller than the

standard FORTH screen which is 16 rows of 64 characters.

The smaller screen is better suited to the 2 row by 20
character LCD.

When the system is first initialized (i.e., when

the software is first placed on the hardware), some of the

screen segments are used to store system messages, as in

standard FORTH. Additionally, sone screens are used to

store some of the definitions used in the PDBMS, particu-

larly those used vith the naive user interfaces. This
allows the user to eliminate or change these definitions and

system messages as he sees fit.

55



it the time of this writing, the PDBMS is in the process

of being prototyped. This first prototype is not intended

to meet all of the desired characteristics of a PDBMS. For

example, it cannot be hand-held because it is bread-boarded

and a standard keyboard is used; additionally it requires

more than one power supply because not all of the CHOS

components have been received. What is described in this

chapter is the outline of the final prototype as it is envi-

sioned at the present time. For the most part, this is a

description of the PDBMS as it would appear to the user.

A. THZ HARDVARZ

From the user's point of viev, the hardvare consists of

four major components: 1) the enclosure, 2) the display, 3)

the keyboard, and 4) the electronics inside. These aspects

involve how the system physically appears to the user, not

how he perceives it to work.

The enclosure should be as small as possible and yet

still be useful. The major constraints upon how small the

PDBMS can be made are the size of the display and the
keyboard. The minimum practical size available with

currently available products is approximately 9 inches (23

cm) by 4 inches (10 cm) by I inch (2.5 ca). This is the

average size of most of the hand-held computers today, such

as those made by Panasonic, Radio Shack, and IXO [6 and 7].
These systems tend to weigh around 14 ounces (400 go).

Their size seems to be the smallest practical one in order

56



to keep the keys far enough apart to minimize the chances of
hitting the wrong key or hitting two keys at once'. It is

doubtful that the display will be shrunk; if anything,

future displays will be larger and allow smaller fonts, thus
allowing more information to be shown. Ultimately, it could
be possible for the display to dominate the front of the

PDBHS if voice input were incorporated. This would most

certainly require a large display because function keys
would probably not be used (or even lesired) and the system
would be expected to echo all vocal input so that the user

could verify that he had been correctly understood.

The back of the enclosure opens to allow batteries
to be changed and EsPROM to be added in or taken out. This

last feature would not only allow the user to expand his

memory (or treat it like a floppy disk, i.e., interchange-

able secondary storage), bnt also allow the transportation

of software and data from one PDBMS to another by a means
other than through the RS232 port. The hardware and soft-

ware of the first prototype do not include an ability to add

more EzPROE, but the required modifications are minor.

It should be mentioned that the current implementa-

tion of Keys does not gracefully support the transportation

of sealed objects from one system to another by physical
transportation. There is no way to guarantee that security

would be uniformly enforced, independent of the system in

which the objects are found, because key assignments are

local in context.

*The s ze of t e keyl is reall unimportnt so 1 ;s
the user reels comfortable using th em. This normaily I.s
taken to mean that the keys should not be physically uncia-
for tab. to use and they should provide so sort of tactile
ana aulble response upon being struck.

57



1

2. k .ui

The current display is an LCD which contains two

rows of 20 characters each. This is larger than the

displays in most of the currently available hand-held
computers. These normally have one row of 16 to 20 charac-
ters. It was felt that two lines were the minimum

acceptable number of lines for the PDBMS. Two lines allow
user commands and responses to appear on one line and the
system responses and prompts to appear on the other. This

allows the user to compare his commands and responses with
the system's. Ideally the PDBDS should have a larger

display. The largest LCD displays available at this time

have four lines with 40 characters per line, however these
are too expensive to be compatible with cost criteria of the

PDB HS 7.

3. Ia xks

Most of the keys should be 3/16 inch (0.5 cm) square

and protrude from the keyboard background by 1/8 inch (0.3

cm). The keys are separated by 1/4 inch (0.6 ca). These
dimensions are used on most of the Hewlett-Packard calcula-

tors for the arithmetic keys (i.e., + - + x). Using them

as an example, the author found that keys were easily
differentiated from one another, and two or more keys were

almost never pushed simultaneously. The keys should be
arranqed by function with the backgr3snd colored differently
for the letters, numbers, and special function keys, similar

to what was done on the Quasar and Panasonic computers [6].
The on/off switch should be away from the other keys and be

a sliding switch, not a push switch. This should be done to

'LCD is the only fla• disolayno technology r l
available which ispower or:icio t ough to eO uesnl
good Pattery poworel _system. LED &ad plasma displays are
much loss power efficient.

58



help prevent the accidental switching on or oif of the
pow er.

The letter keys should be arranged in the standard
"QWERTY" format, not only because of the entrenched place in

the English speaking world [1], but also because it has been
found to be more effective than previously thought relative
to some keyboards designed using human engineering princi-

ples, especially with novi-e users [9]. At the present only

upper-case letters are planned to be provided to the user
for text entry. Below is a list of the keys and their

functions.

a. Letter and Digit Keys

These keys act in the usual and expected
fashion; they are used to enter the ASCII representation of
the desired character. Input from these keys is handled as

it norm Lly would be in any FORTH system. The letter keys
may also be used as "function keys." When shifted, using
the shift key, the ASCII code for the keyls lower-case
equivalent is generated. These "illegal" characters are

treated similarly to LaFORTH words; that is, they are inter-
preted immediately upon input :9]. Initially the function
accomplished by these words is to place into the input
message buffer and the LCD window the ASCII string represen-
tation of other words; they do not appear in the input
message buffer or on the LCD'. For example, in the database
management application a shift-G causes the word GET to be
placed in the message buffer and the LCD window so when the

return key is eventually pushed, WORD will find GET in the
buffer, not shift-G. Notice that the keys may perform
different functions depending upon the current vocabulary.

'When they must be displayed, as intheir colon defini-

tions, they ale displayed n -reverse video.

59



b. Mathematical Keys

These keys are similar to the shifted lettered

keys, however they act as input immediate words without

shifting them. That is, they always cause a search of the
current vocabulary. This was done so that the user can

choose to use either infix or postfix notation (infix nota-

tion is the default definition of these keys in the "naive"

calculator vocabulary). These keys include the following

five keys:

+ x + %

c. Special Function Keys

These keys are the usual terminal editing keys,

and with the exception of the "NEXT" keys, they are not

programmable. The keys are described below.
(1). =2Le. This key causes a carriage return

and line-feed to be placed into the input which is reflected

upon the LCD. This causes the interpreter to begin parsing
the input.

(2). 22.- This causes a control-a to be input

and acts as a character deletion key. It backs up the
cursor cne position and displays a space on the LCD.

(3). :- This moves the cursor to the right one

character position without effecting the contents of the LCD
window cr the message buffer.

(4). . This moves the cursor to the left one

character position without effecting the contents of the LCD
window or the message buffer.

(5) . Shi . This is a non-locking shift key
used with other keys to elicit their alternate definitions.

(6). Ia. This deletes all input from, and

including, the current cursor position to the end of the
line.

60



(7). "IT+ _ J, . These keys are used to
scroll the display to the next line ibove or below, respec-

tively. In the database application, the shifted NEXT keys

are used to scroll to the next field above and below the
current field. This allows fiells to include carriage

returns and line-feeds so that a field need not be

constrained to one logical line on the display.

B. T8E SOFTVARZ

When the user initially receives the system, he is

presented only with two functions: a calculator and a data-

base manager. He does not have direct access to ROOT. This

was done to help prevent the user from inadvertently

destroying the system before he understands it. For

example, it prevents him from redefining or forgetting a
word accidentally. The user can expand the scope of the

system gradually as he learns more about it until he can, if
he chooses, run it strictly in FORTH (or even redesign the
system to a great extent). This flexibility is gained by

using FORTH execution vectors. In the case of interfacing

with different levels of users, there is a different version
of FIND for each level of user sophistication. So as the
user becomes more adept with the system, the vector associ-

ated with FIND is simply made to point to a new, more
powerful version of FIND' s run-time code. The version

initially available to the user only searches the limited

calculator and database management vocabularies; the ROOT

vocabulary is not searched. The version available to the

most sophisticated user includes a zodified version of the

standard FORTH FIND. All FINDs have been modified to be a

little more user friendly. Instead of reporting the usual,

"IS UNDEFINED," when a word is not found, the PDBMS reports
the current vocabulary's name as well. So for example if

61



the user entered a (:) when he was using the database vocab-

ulary where it is undefined, the system would report, "NOT
DATABASE WORD." Notice that this message may fall off the

right-hand side of the display for some words; but the first

word of the message should cue the user to the error and if

he then realizes that he has forgotten what the current

vocabulary is he can move the display to the right using the

cursor control keys.
There is no editor in the "initial" system because all

of the needed functions are available through the keyboard
keys, making the PDBMS a full-screen editor, albeit a sMU

screen editor. There is an editor vocabulary which is

defined in the PDBMS after ROOT and ASSEEBLER. This editor
is only needed once the user has begun working directly with
screens. Table 5.1 shows the vocabulary structure of the

PDBNS. The concept of sealed vocabularies' is employed;
however notice that some words link one vocabulary tempo-
rarily to others. For example, SEAL causes a search of the
Key vocabulary. SEAL and UNSEAL are defined in the DB
vocabulary to be themselves (i.e., they simply point to
their definitions in ROOT). This allows them to be used by

the naive user without directly accessing the root vocabu-
lary. Z2 PROA permanent vocabularies (i.e., Key, file, and
virtual block) are not linked through each other or those

vocabularies defined in RAN. Thus FORGETting a definition

in RAn which precedes a file, block, or key definition will

not erase any E2PRO definitions'0.

SThese are vocab aries which confine wor sejches to
theaselves, and usually FORTH. The FIND uses in .ig-FORTH
sea ches all parent vocabularies af the current vocabu-
lar es. The calculator and database vocabularies are
totally sealed in that not even the root vocabulary is~sea rched.

efobjr hblefatic eatu o slaidard FORTs
ttari actoalfy ma.ntaine i one straig t'" linked list; vocabularies only describe searchn path~s throdgh
the one list. The traditional FORGETesimaly deletes a 1
definitions created after the d fit ton to be

62



=I V@Uaftiy

0 s DefInIttei

A a

DuOM -- --- -

I I&M M - - - - -

LITI

Figure 5.1 PDBNS Vocabulary Structure.

63



Initially the calculator is entered by pushing
shift-C. This places the user into the calculator context

whose vocabulary contains redefinitions of *, -, x, and + so

that they are infix operators. FIND has been modified so

that if a word is not found and an equal sign has been

previously interpreted, a constant is created. This allows
the user to store temporary results by creating "variables"

simply by using an undefined word. For example,

1 + B= A

would cause "" to be created. If "B" had not been previ-
ously defined an error conaition wouli be raised when it was

not found in the dictionary. The equal sign is an input

immediate which causes 0A" to be created, if need be, and

sets up an execution vector to cause the ENTER key to store
the top of the stack into "A."

Because a derivative of FORTH is used, floating

point arithmetic is not used. The system defaults provide
the user with a fixed two digits behind the radix point.

Like FORTH, the user may choose any base (radix) for arith-
metic operations, within the limits of the number of input

symbols available.

2. Th 2311kI3

Initially the database management system is entered
by pushing shift-D. This vocabulary allows users to create

files, create records, retrieve records, update records,
delete records, and delete files. Additionally the user may

forgotten-even if they are not In he current vocabulary.
hen there are multiple vocabuli.&ps# this can createangling pointers in vocabulary do iinitons.

64



create and delete Keys, and use Keys to lock records and

other Keys.

a. Keyboard Key Definitions

When the user is placed into the database

context the NEXT keys are redefined as described before.

Besides those two keys, the following shifted characters are

defined. These keys are described below. The word which
appears on the display and in the input message buffer when

the key is pushed is shown in parentheses.

(1). . (PARS). This is used to delete a
file, record, or Key. There are three different DELETEs,

one in each the DB, file, and Key vocabularies. Each delete

effects only those elements in its respective vocabulary.

The delete in the file vocabulary deletes files, the one in

the Key vocabulary deletes Keys, and the one in the Da

vocabulary deletes the current record.

(2) . r I his word changes the context

for the interpretation of the worls following it in the

input stream so that the file vocabulary is searched. The

context is reverted to the DB ("calling") vocabulary when

the first word not found in the file vocabulary is encoun-

tered. The last filename mentioned before the context is

switched out of the file vocabulary becomes the "current

file."

(3) . Z (}. rhis is used to initiate a

record retrieval. Table tII shows a typical record proce-

dure. First the user is asked if the current file is the
one to be searched, or asked for a file if there is no

current file. Then the user is presented with the names of
the fields of the records in the file so the user can enter

values which are to be used as key attributes for retrieval.

If the user does not desire to enter a value for a partic-

ular field, he simply presses the ENTER key. The query in

65



Table III is a request f3r any record in the ADDR-BK file

which contains "TABETHA" in its NAME field and "MONTEREY" or

1TA." in its CITY/ST field. Before actually performing a

retrieval operation, the user is asked if he still desires

to do the retrieval allowing him to abort a query if he has

realized that he has made a mistake.

TA BLE III
Record Retrieval

GE.T
FILE ADDR-BK?

NA SE?

STREET?
<e!nte r>

CI TY/ST?
MoN TER_.! VA.

PH ONE ?

MISC?

IGET?

I RECORD FOUND

PUSH NEXT

()A. 1 ( -Z_). This is used to make a Key

which has been made known through a UNSEAL operation,

unk no wn.

66

... ....



(5). K (KEY). This word changes the context

for the interpretation of the words following it in the

input stream so that the Key vocabulary is searched. As

with the shift-F, the context reverts to the calling vocabu-
lary when the first word not in the Key vocabulary is

encountered. This word does not effect any Keys or the Key

vocabulary, it is only used as a prefix word for HAKE and

DELETE.

(6). 4 (f_!KE). This word, like DELETE exists

in the DB, file, and Key vocabularies. Each different

version creates a record, file, and Key respectively.

(7). _j (JQ). This is used as an answer to

appropriate system prompts.

(8). E (SOT). This is analogous to SAVE-

BUFFERS and FLUSH in that it writes the current record to

secondary storage.

(9). A (RECO2 ). This word is included for

consistency reasons. It is used to preface DELETE and HAKE
when the user wishes to use the DB definitions of these

words. The DB DELETE and HAKE must be prefaced by RECORD so

that there is less chance of an accidental record deletion.

(10). S ( EL). This is used to seal a Key or

the current record. It is simply defined as:

: SEAL ROOT SEAL ;

This allows the user access to the root word SEAL without

directly accessing the root vocabulary.
(11). _U (UjS_-). This word is used to unseal

all objects sealed with one or more Keys. It, like SEAL, is

simply defined in terms of the root word UNSEAL.
(12). , (MS) . This is used as an answer to

appropriate system prompts.

67



b. File Creation

Files are created simply by using the words FILE

and BAKE. Upon entering shift-F (or FILE) and shift-M (or

BAKE), the user needs only to follow the system's prompts.

Table IV shows the file creation sequence. The user's input
is underscored. The user always gets an additional field

called "miscellaneous" added to the bottom of all records.

This is included because it was found that people's personal
data does not normally fit a uniformly structured record.

c. File Deletion

File deletion is simply affected by the sequence

shown in Table V. File deletion is not a trivial matter
since the E2PROM is organized as a heap with physical
records containing a mixture of sealed Keys, DB dictionary

entries, and records from various files. First of all, a

user cannot delete a file unless he has unsealed all of the

records in it, so DELETE must make one pass of all the

records in the file to ensure that they are all unsealed.
If all of the records are unsealed, then a second pass is

made of the records reallocating all of the physical records

back to the system (i.e., setting their corresponding bit to

zero in the record bit map). Additionally, on this pass the

first byte of each physical record is set to 80H (the

system's Key) while the second byte is set to FFH (the null

Key). Then the DB dictionary must be searched for all

references to the deleted field numbers, and these must be

removed. When a field reference is removed f:om a wordd's
list of field IDs, the hole created by this deletion is

filled by moving the last entry on the list up to the

vacated spot. Physical records vacated by this operation

are returned to the system. Finally the file's vocabulary
and its field entries can be forgotten. Obviously file

deletion is a lengthy and complicated process.

68



T ABLE IT

File and Key Creation

File Creation

NAME?

FLD 1 ME?

FLD 2 NA ME?
STiuZ

FLD 3 NANE?

FLD 4 NAME?

FLD 5 NAME?

FLD 5 RISC OK

Key Creation

OK

d. Key Creation

Creation of a Key is very simple, as shown in

Table IV. The example shows the areation of a key named

"SECRET." All that is required to create a Key is the addi-

tion of "SECRET" into the Key dictionary as a constant and
initializing it to the next available Key ID number.

69



T aBLE V

File, Key, and Record Deletion

File Deletion

ZMLa "&1A _Uj
DELETE ADDR-BK?

DELETED OK

Key Deletion

DELETE SECRET?

DELETED OK

Record Deletion

DELETE RECORD?

DELETED OK

e. Key Delet ion

Key deletion is accomplished in the same manner

by which files are deleted, as shown in Table V. Also like

file deletion, the mechanics of Key deletion are not the

equivalent to a straightforward FORGET. Before a Key can be

deleted from the dictionary, all occurrences of the key in

the various access descriptors must be located and changed

to reflect the Key's deletion. rhis entails searching the

access descriptor of each screen, record and sealed Key and

70



converting the deleted Key's ID to FEH (the deleted Key ID).

After this is done the Key is deleted from the dictionary.

A sealed Key's physical record is returned to the system,

after setting the first byte to 80H (the system Key) and the

second byte to FFH (the null Key).

f. Record Creation

To the user record creation dialogue is similar
to the one associated with file creation. What is involved

is collecting the desired data, encoding it", finding phys-

ical records to hold the logical record, and finally linking

the record into the parent file's linked list of records.

Currently the linked lists of records are maintained in

chronological order (i.e., as a circular queue). This may

be frustrating in some applications where the user would

like to peruse the database in some specified order. For

example, it is not possible to view the records of an

address book alphabetically by surname, unless they were

originally entered in that order. Because of the unfor-

matted nature of the fields, it is very difficult to sort a

file by key attributes.
It would not be too difficult to allow the user

to specify a record ordering other than chronological. This

could be done by allowing the user to flag a wordd in the

record as the sort-key-value (for example the last word in a

record starting with the character 030). Then when the

record was PUT into the database, it would be inserted into

the file's linked list alphabetically relative to the other

"a-wordds" in the file's other records. So the user could

t'This includes converting the uvords to .unqtuation and
wordds, and then the addition of the wordas into the DS
dictionary.

71



maintain the file sorted by surname by prefacing all

surnames vith a 1"12 .

T ABLE VI
Record Creation

I jHCORR Buz
STRBEET?

CITY/ST?

POOVE?

NI SC?

OK

Table VI shows a typical record creation
sequence., Notice that no phone number was given; a null

entry is signalled by hitting the ENTER key. also notice
that there is an implicit "current file." This file is the
last one referred to after the last use of FILE; had no file
been explicitly referenced before a record creation was

attempted, the PDBNS would have requested a file name. If
the file was not found, the user would have been asked if he
desired to create a file or abort the record creation.

12Th s may not appeal to many users, but fit would not
necessarily nave to appear in the name field. The
'0-surnamen could be placed in the "miscellaneous" field.

72



g. Record Deletion

Record deletion is requested by the user in the

sane fashion as file and key deletion. Record deletion

involves first removing the record from the file's linked

list by making the two records adjacent to the current

record point to each other. These links are found in the

current record's previous and next link bytes (see Figure

4.5). Then all of the wordd references to the record in the

DB dictionary must be deleted. Finally the physical records

are returned to the system after setting the first byte to

80H and the second to FFH.

h. Update

Only records may be updated; files and keys

cannot. Records are simply updated by GETting them, modi-

fying them using the cursor control keys, and then PUTting

them back. Like FORTH, once a change has been made to a

record, it is marked as being updated, whether or not the

change is later undone in the same editing session. Once a
record has been marked as updated and it is PUT, the updated

record is added as a new record, and the old record is
deleted. This is not quite as drastic as it may sound. The
old record is used as a template for encoding the new

record. Wordds which are unchanged can be copied from the
old record directly into the new record. The old record
also contains all of the pointers into the DB dictionary
where new virtual addresses must be substituted, so the

dictionary must be searched only when a new wordd is added.

Record update is actually a record creation and deletion

operation.
It could be possible to allow file editing

(i.e., the addition and deletion of fields) by performing

the same type ot operations as are employed in record update

73

.. .. ~ ~ ~ ~ ~ ~ - - -fi - -i m lnlm u ~ o l ° - - -' -h -i -no .. .....



(i. e., creating a new file, transferring the appropriate

data from the old file into the new file, and then deleting
the old file). However, this was considered too complicated

and slow to Justify its inclusion for what would probably be
a rare event. Besides, by always including a I'miscellaneous
field" in all records, it was felt that this would probably
not be a very necessary operation.

74



i ~V1- MUs;1, IM2g,1111 212M

As stated earlier, security is important in a PDBMS

because of the personal nature of the information it may

contain. However, the type of security afforded in this
design is probably better suited for a larger system.

Probably all that is required for such a system as the PDB3S

is a simple mechanism which employs one Key or password.

This allows the user to hide anything he desires at one
level of security (i.e., one either has access to all of the

data or has access to only a subset of the data). The PDBMS

uses a much more elaborate system. This was done to test

two things: the feasibility of securing FORTH, and the
feasibility of implementing a security mechanism similar to

the one described in reftrence (10]. FORTH was chosen as

the language to implement the PDBMS with no firsthand knowl-

edge of the language. Because it is an interpreted

language, it was felt that there would be no problems with
securing the system. However, after receiving the FORTH

documentation and software many doubts were raised about

whether the language could be secured.
At first one thing which seemed essential to securing

the PDBMS was the restriction of the user's ability to use

assembly language. If the user can write words in assembly

language using physical addresses and ports (the only way to
write such words on the NSCO0 since it does not support
segmentation and privileged modes) there is almost no limit
to what he can do. All standard FORTHs are very close to

the hardware and allow words to be written in assembly

- language, besides FORTH. As a matter of fact, it is so

close to the machine, that in 8080 fig-FORTH and FORTH-79,

it is impossible to prevent the programmer from writing

75



assembly language defined words without changing FORTH to

such an extent that it is no longer the same language. In

these two systems, the words which are used to specify code

definitions (;CODE, CODE, END-CODE, and (;S)) are all high-

level words (i.e., words written in FORTH as contrasted to

low-level words which are written in assembly language), as

is the assembler. ks far as the author can determine, there

is no low-level word which can be "hidden" from the user
without having a detrimental effect and which is required
for entering assembly language defined words.

The word "hidden" is enclosed in quotes in the previous
paragraph because no word can be hidden from a user in his
address space. "Hidden" means that the user neither knows
of the hidden wordes existence or doesn't know where to find

its definition, nor can he execute it directly. A word in
FORTH which can be located can be executed even if it is not

in the FORTH linked list word dictionary (one simply puts
the address of the first executable byte onto the parameter

stack and evokes EXECUTE). If a user is to be allowed to

program in FORTH, he must be allowed to access words in the

ROOT dictionary, and in order to access words, their names
must appear in the dictionary since FORTH searchew the

dictionary by name. This makes it very easy for a user to

traverse the dictionary and look at its contents and at the

location of words. It would not be hard, though probably
tedious, to find a word not included in the dictionary by
checking for unaccounted gaps between words in the linked

list or finding a reference to a code field address of a
word which does not appear in the dictionary. If one were

to seriously consider hiding words, the best way to do this
would be to remove all of the headers (the name and link

fields) from all of the dictionary entries. Such a system

could not be extended because no words in the dictionary

could be found (since the name and link fields are necessary

76



to search for a word). If the PDBKS was to be secured there

had to be another method which eithar prevented the use of
assembly language or worked regardless of the fact that the
user could use assembly language.

In the PDBMS, FORTH could possibly have been secured

entirely by using software and still allowed the user to
program in FORTH, however it would have undoubtedly been a
very limited subset of the language. Such a system would
have not needed EPRON; instead a col4 boot could have loaded

the system in from E2PROR. Verifying such a system would
have surely been a problem. Instead the PDBNS relies on

both hardware and software to enforce system security.

A. HARDWARE SECURITY BEASURS

In multi-user systems hardware support of security is
essential; in truly secure systems it must be verified that
there are parts of the system that no one but system admin-
istrators can access. In the PDBMS the hardware and

software enforce security to such an extent that even the
owner of the system cannot access parts of the system at
all. 3 . This is desirable because it not only prevents other

persons who are not the owner of the PDBNS from compromising

or destroying the system, but it also prevents the user from

K "terminally crashing" the system. Many of the system's boot
parameters are stored in EPRON and 2PROB. If these were

lost, the system could not be booted up.

It is the interaction of the EPRON and the "smart ports"

which is the hardware portion of the system's security.

Simply, the ports which control ac-ess to virtual memory,
the keyboard, and the RS232 port only accept instructions

'3The P BBS has not been rovencorrect and asecure athe sense of the ways scribe in rrenc a 12
oHwever,. the author beyeves that it can be made secure afd

rigorously proven to be so.

77



executing from EPROM, as discussed in Chapter IV. Because

EPROM is read-only, the user is forced to use procedures in

it to access these external devices. Thus if the procedures

in EPRO11 can be verified that they are not only correct, but

they are also unsubvertable, then the PDBHS can probably be

made secure4.

B. SOFTWARE SECURITY BEASR DES

The hardware in itself does mot guarantee a secure

system; there must be some verified software which operates

it. There are three different aspects of the software in

the PDBNS which are used to provide security. & fourth

aspect is mentioned here which is related to security but is

not involved in system security per se. The first three

items are: straight-through code, maintenance of system

parameters and tables in E2PROM, and Keys. The fourth item

is the FORTH concept of execution vectors.

Contrary to FORTH programming style, words which are

involved with port access must be low-level and indivisible.

This means that these words must not be defined in terms of
other words, i.e., they cannot be colon definitions, they

. must be code definitions. For example, it seems obvious
that one would like to write the following low-level words

for use in other system management words because they would

be very commonly used:

141 correct rocedure is one that does only what it is
desiqrdd to ; nothing moe and nohing les.
Unsubvertabilit y is a stronge; cod itio4 tha4 Correctness In
that it means that even coSbinat.ons or modules of correct
code and portions of modules cannot be ca sed to be made to
nteract incorrectly. This is a concern in the PDBMS since

the user can read and execute the system's source machine
code.

78



EZPROMON ( Turns E2PROM power on )
E2PRORHRTON ( Turns EPPRON write power on )
WRTERPROM ( Initiates an E2 PROK write )

EzPROM VRTOFF ( Turns E2PRO1 write power off )
3EPRONOFF ( Turns EzPRO11 power off )

However, as mentioned before, if a word exists in the user's

address space, he can fini it and execute it. This means

the user could find ZRPRO..ON and REPROEIWRTON, and execute

them from EPROB. Then using his own assembly language

routines, he could manipulate the contents of the EzPROM.

The only way to prevent this is to create a minimum set of
virtual memory management words which, once execution of any

one of them begins, never branches out of the word or

returns to the inner interpreter without first turning off

access to the ports. Also these words should be written so

that if the user jumps into the center of their code, they

are still correct.

The first requirement is fairly easy to achieve
because these lords are resident in EPROM, thus because they

cannot be altered, if a user jumps to, or into, them it can
be assured that he cannot effect the execution of the words.

The second requirement is much more problematic. Satisfying

this means that the actions of these code sequences can

maintain system security regardless of the actions performed

before and after their execution, and regardless of whether

the entire sequence is executed (i. 9., the user jumps into
the middle of a code sequence). For example, the user must

not be able to use the code of one word (whether it is the
entire code sequence or a part of it) to set up the segment
register to point to the Key dictioaary, and then by using
another word, retrieve the Key dictionary.

79



E2PRf

By controlling access to E2PROM it is possible to

use parts of it to store information which the user should

not have access to. Chapter IV discusses the information
which is stored out in E2PRON which is not accessible to the

user. The locations of the parameters and beginnings of
these tables are static so that they may be referred to
directly by using their segment number and E2PROM addresses

(FFOOH through FFFFH). These references are found in EPRON

where they are visible to the user. The insurance that the
user cannot directly access these segments must be incorpo-
rated into the design of the straight-through code. The
code must be written so that when control is passed from the
word to the inner interpreter, the user is left with no more

information about the tables and parameters than he is

authorized access to. Any routines which do system table
and parameter maintenance are designed so that they work
directly on the ERPROM and never bring the contents of these
segments into RAN. This makes it easier to ensure the
security of system segments.

The above is not entirely true of the PDBHS. During
retrieval operations, virtual addresses are brought into the

data buffers. Thus the user can gain some information about
the maintenance of the system's segments by dumping the

contents of these buffers. This information is kept in RAN

because it is a "write-intensive" operation. Additionally
it must be left in the buffers after the system is finished
with processing the query because the virtual addresses must

be used to find the records which satisfy the query condi-
tions. The current record's virtual address is needed so
that if it is updated the location of the old record can be

found and deleted. Thus the user can gain access to the

80



virtual addresses cf records to which he is authorized.

Allowing the user access to the virtual addresses of all of
the records which satisfy a query gives him some information

from which he can make inferences ibout the allocation of

physical records, including those to which he is not author-

ized access. How much information can be gained through

inference seems to be limited by the fact that the segments

in which these records occur contain not only records (which

can use varying numbers of physical records), but sealed

Keys and DB dictionary entries (which also use varying

numbers of physical records). Additionally if any deletions

or updates ever occurred, the physical records may no longer

be allocated in a sequential and chronological manner. Thus
in a mature (i.e., one which has processed a number of Key

and record additions and deletions) system, it is question-

able that much meaningful inference can be done. Of course,

the problem can be avoided entirely by keeping all of these

virtual addresses in E2 PROM at the expense of system speed

and possible E3PROM "burn-out."

The proper implementation of Keys relies heavily

upon the preceding hardware and software base. Keys are

very simple-nothing is fetched from E2 PROM unless the

proper Key (s) has been UNSEALed (or sade known). The opera-

tions associated with SEAL and UNSEAL effect the Key

dictionary but have no effect upon sealed objects. As

mentioned earlier, Keys are maintained in a dictionary as

constants. When a Key is UNSEALed, the high bit of its
character count byte is set to one. When a data object

fetch is requested, the object's access descriptor field is

"computed" to see if the requisite Keys have been previcusly

made known.

81



I

The access descriptor fields are limited to the

first physical record for screens (16 Keys), 15 Keys for a

sealed Key (one physical record less one byte for the sealed

Key's ID), and no limit for database record (since they are

permitted to cross physical record boundaries). However for

consistency, from the user's point of view, 15 Keys is the

limit for all system objects. The Keys may be "anded" and

"ored" with each other to form complicated access mecha-

nisms. This may be further extended by adding layers of

sealed Keys. For example if access to the current record

q required the Keys "CONFIDENTIAL" and "ACCESS," or the Keys

"SECRET" and "ACCESS," the current record could be sealed as

follows:

KEY CONFIDENTIAL ACCESS & SECRET & I RECORD SEAL

or

KEY CONFIDENTIAL SECRET I ACCESS & RECORD SEAL

where "" is a logical "and" and "I" is a logical "or." If

CONFIDENTIAL's ID was one, SECRET's two, and ACCESS's three,

and the second example above had been used to seal 'he

record, then the record would have four key bytes which

would contain:

01H 02H 83H FFH

Notice that the high bit of ACCESS's ID was set to one.

This signifies that it is to be "anded." A zero high bit

signifies the Key is to be "ored." Unique "access paths"

are described in both the SEAL process and the access
descriptor because they are specified using reverse Polish

notation.

82



When an attempted fetch of a record is made, the

* fetch algorithm starts by setting a fetch flag to true (the

value one). Then it simply reads each Key ID from the

access descriptor and searches the Key dictionary to see if

the Key is known (i.e., the high bit.of its character count

is set to one). If the Key is known, the search returns a

one, otherwise a zero. The result of the search is "anded"

or "ored" with the fetch flag according to the high bit of

the byte in the access descriptor. When the null Key is

found in the access descriptor, the value of the fetch flag

determines whether the object is sealed or unsealed.

Since the Key dictionary entries are maintained as a

FORTH dictionary and FORTH dictionaries are searched by

name, it may seem that searching the dictionary using the

Key's ID may be difficult. It is, in fact, faster than

searching by name. This is because of the structure of the

dictionary entries which allow the Key's value to be

retrieved easily because it is located in the byte immedi-

ately following the CFA. Searching by name is slower

because it involves string comparisons.

At the root of the Key dictionary (i.e., that entry

whose link is equal to 0030H) is the definition of HAKE.

Below MAKE are all of the other colon definitions in the Key

vocabulary. After the last colon definition is the defini-

tion of the system Key. This is a =onstant like the other

Keys but its value is 80H and its count byte contains a OOH.

This means that its name's length is zero, and thus it has

no name and cannot be found by a name search of the

dictionary. Because it cannot be found, it can never be

UNSE&Led or made known, so the high bit of its character

count will always remain zero. Below the system Key are the

definitions of the null Key and the deleted Key. These

Keys' values are FFH and FEH respectively and their char-

acter count bytes are equal to 80H. This means that they

83



also have no name and they always remain UNSEALed or known.

Because these three Keys' values are greater than 127, they
are always "anded" into any Key ID list in which they

appear.
Changing a deleted Key's ID number wherever it

occurs in an access descriptor list results in a "sensible"
condition. That is, all other Keys are still required in

their same logical relationship except that Key (or rela-

tion) which preceded the deleted Key which now takes the

place of the relation between itself and the deleted Key. &
major problem with deleting a Key is that the user may not

realize the data objects which he is effecting or how he is

effecting them. This is an unresolved problem in the PDBMS
and it is more complicated than it appears on the surface.

Finally, there is one last important operation which

concerns maintenance of the Key dictionary: making Keys

unknown. The user can make Keys unknown on an individual

basis by using SIDE. For example,

KEY SECRET HIDE

makes "SECRET" unknown and seals any objects which are

sealed with SECRET. Whenever an non-maskable interrupt is
generated, the virtual memory manager makes all Keys whose
character count is greater than 80H unknown.

Execution vectors are used in the PDBMS to allow the

user to interact with only that part of the system which he

understands. However, they -an be used to provide system

security to an extent. Simply, if a user does not know how
to change a vector's value (or a collection of vectors) or

what value to change it to, the situation is similar to

needing a password to access a more powerful system. At the

84



lowest level it is easy to prevent a user from using more of
the system than is desired. If the user is constrained to a

vocabulary which does not contain words which would allow

him the make colon definitions (e.g., (:)) or access memory

directly (e.g., (I), (), etc.) the inner working of the
system can be hidden from him. Making a user more privi-

leged simply means giving him the name of a word which
changes the values of the execution vectors (of course this
word cannot appear in a listing of the vocabulary). As the
system to which the user gains access becomes more powerful,
it becomes progressively harder to provide system security

by using execution vectors without relying upon hardware.

85



THE LANGUAGE FORTH

A good description of the concepts upon which FORTH is

based may be found in reference (13]. FORTH is a stack-

oriented, threaded, interpretive language. It is noted for

its compact size and fast execution (compared to other

interpreted languages such as BASIC). The 8080 fig-FORTH
model (version 1.3) occupies less than 9K bytes of memory
(which includes the first page of memory occupied by CP/H).

Residing in that 9K is the FORTH interpreter, compiler,

dictionary, and a line editor. There are two "generic"

FORTHs. The older version is usually referred to as

"fig-FORTH," the never version is usually referred to as

"FORTH-79."0 FORTH-79 was designed to be a standard which
establishes the minimum requirements of the language.

Specifically reference [2] states that the purpose of

FORTH-79 is

to allow transportabi itj of standard FORTH programs
in source form among staniard FORTH systems. A standard
program shall execute equivalently on all standard FORTHs ystems.

The bibliography contains a list of sources used by the

author while learning FORTH. anyone who seriously desires
to understand the language should have at least some of
these books and pamphlets.

A. WORDS

The basic unit of the language is a "word." Words can

be "coloL definitions" (analogous to functions and proce-

dures in other languages), variables, and constants. New

86



words are defined in terms of previously defined words,

* •making the language extensible. Defined words are kept in a

linked list called the "dictionary." The dictionary is

maintained as a stack (First-In-First-Out or FIFO) so that

the newest words are searched first. Thus previously

defined words can be redefined. Dictibnary entries are

pruned by using the word FORGET. When a word is

"forgotten," all words defined after it are also forgotten.
Rather than a straight linked list, the dictionary can be

extended in a tree structure where branches denote different
contexts. Table VII is a list of the FORTH-79 required

words. The words in lower-case are dictionary entries for

the run-time code for the corresponding compiling word.

B. SYSTER DATA STRUCTURES

Figure .1 depicts the standard FORTH memory organiza-

tion. The user dictionary grows up towards high memory
while the parameter stack grows down towards the dictionary.

The unused portion of memory separating the two is called
the pad. The beginning of the pad moves up in memory with

the dictionary pointer (DP). It is usually located 44H

bytes in front of the DP. Likewise, the input message

buffer grows up in memory according to the size of the input

message while the return stack grows down towards the

message buffer.

The parameter stack is used for sathematical data manip-
ulations and parameter passing. The data on the stack is

operated upon using reverse Polish (or postfix) notation,
similar to Hewlett-Packard calculators. The return stack is

used by FORTH for storing the interpreter pointer (the

address of the next higher context, i.e., the calling word).

The pad is used primarily for string manipulations. System

variables are those variables maintained and used by FORTH

87



TA BLE VII

FORTS-79 Required Word Set

+1 +
NHOD 0< 0=/ . +1- 22- < =>

>R ?DUP I ABS
AND begin C! Ca
colon CROVE constant create
D+ D< DEPTH DNEGATE
do does> DROP DUP
else EXECUTE EXIT FILL
I if J LEAVEl~iteral loopMA MIN
ROD sOVE NEGATE NOT

OR OVER PICK R>
R& repeat ROLL ROT
semicolon SU P the U*
v le otU< unthl variable

# #> #iS,

TRAILING 79-STANDARD
>IN ABORT

BASE BLK CONTEXT CONVERTi.COUNIT C R CURREN T DECI MAL
+"EXIT EXP ECT FIND FORT H

HERE HOL D KEY PADp EY QUIT SIGN SPACE
PACES WPE U. WORD

+LOOP off
. iLLOT BEGIN COMPILE

1ONSTANT CREATE DEFINITIONS DO
DOES> ELSE FORGET IF
IMMEDIATE LITERAL LOOP REPEAT
STATE THEN 'UNTIL VARIABLE
VOCABULARY WHILE C [COMPILE]]I

II

BLOCK BUFFER LIST EMPTY-BUFFERS
LOAD SCR UPDATE SAVE-BUFFERS

88



Low Poor y

Pre-Coeftfle FORTH

System Vorleb I..

Elective Deftnttfor'

Umsv Wefnftfons

Pad

Pramter Stock

Kioat Pofegn luff r

P'tPrn Stock

sEI yauffOlleefa

User Voir f am I4es

$lack lSffgl

Nt mery

Figure A.1 Standard FORTH Memory Map.

89



and not directly accessible to the programmer. User

variables are declared, maintained and used by the system,

but are directly accessible to the programmer. Examples of
system variables are cold boot parameters and CP/H disk

interface parameters while examples of user variables are
the dictionary pointer the current radix (called BASE), and
the current execution state (called STATE).

The number of block buffers is dependent upon the amount
of physical memory available. Standard FORTH blocks are IK

bytes in size and are stored in secondary storage, thus

giving FORTH what its users call virtual memory. FORTH

automatically allocates buffers as they are needed according
to which buffers have not been allocated yet, the age of the

-A contents of occupied buffers, and whether any buffers
contain updated data. Blocks containing FORTH "programs"

are commonly referred to as "screens" because they are

formatted for CRT display; i.e., 16 lines of 64 characters.

C. THE BECHANICS OF FORTH

There are less than 70 assembly routines in FORTH-79,

most of which are less than 20 instructions long. when

FORTH words are interpreted, it is these routines which

ultimately are executed, except in the case of user code

defined words. All words in FORTH contain a code field
address (CPA) which is a pointer to an assembly language

routine which defines the word's run-time behavior. A
constant's CPA points to constant which is an assembly

language routine which places the contents of the two bytes

following the CPA on to the parameter stack. A code defined
word's CPA simply points to the byte following the CPA-the

beginning of the word's code definition.

90K, ' " ,,,mdmlm ,,m ,,,,.a ,e, , ,m,, .. ........



The CFA of a colon definition points to colon. See

Figure A.2 for the structure of a colon definition in the

PDBMS. This routine has different actions, depending upon

the specific version of FORTH (i.e., whether the system

increments the interpreter pointer before executing a word,

or after). In general though, colon pushes the current

value of the interpreter pointer (which points to the

current word being executed in the post-incrementing

systems) onto the return stack and then sets the interpreter
pointer equal to the contents of the first two bytes

following the current word's CFA. These two bytes contain a

pointer to the CFA of the first word in the currently

executing word's parameter field address (PFA). Thus the

execution of a word describes an inorder traversal of a tree
of FORTH words used to define a word and all words used in

those definitions, etc. Leaves on this tree are code

defined words, constants, variables, user variables, and

other data types; nodes are colon definitions.
Complementing colon is semicolon. This is the runtime

code of (;I which is the last word in every colon defini-

tion. What semicolo& does is simply pop the return stack

and sets the interpreter pointer equal to the popped value.

This causes execution to move one layer -Igher in the tree
described above. The topmost word in the tree is QUIT,
which is an infinite loop. So when the interpreter

completes the execution or compilation of a word, execution

returns to QUIT which loops waiting for more input.

The heart of FORTH is the inner interpreter. In the
8080, Z80, and WSC800 all this short code routine does is

take the interpreter pointer and push it into the program

counter. This technique of passin; control from word to

word makes FORTH almost incomprehensible until the entire

sys+em is entirely understood. Because FORTH uses almost no

subroutine calls and jumps, flow of control is not

91



Loot Cher

Nwt Oftclw-ory Entry.o

Name Field Ltf Fr.1d
4A

FIrot CherI

Cout syte

Link Field ---'

Code Fteld "- ------------- colon

firft twrd fn DOftnItten ---------- --- -2 rA of lot wd

Parameter

Field

Lst Word In Definitton ------------- - mcoIIIla

Figure &.2 Structure of a PDBS Colon Definition.

92



immediately apparent. In 8080 fig-FORTH (version 1.3)L . almost the entire FORTH system past the first 1K bytes

consists of "DB" and "DW" instructions&$. Like LISP, most

of FORTH consists of data structures which can be used as

data or executable code.

4

0

to'.The "D8" (Define Byte) and "DV" (eflne.iordl inst~rc-tions are 800asseab y A anguage psue o-tns-ructons which
are used to insert data into co oe areas. For example, the

FORTH message -OK" (folloved by a carrage return an& line
* feed) is inserted into the source code of FORTH by using the

"DB" instruction as follows.

DB 'OK' ,0DH,0&H

93



STUDY STATISTICS

A. BACKGROUND

In order to understand what might be involved in a

Personal Database Management System, four address books were

studied in detail. The results of this study served as a

basis for much of the design of the PDBMS. It should be

pointed out that the results of this study are probably not

indicative of the American population as a whole. The books

were not selected on any scientific basis and had the

following important characteristics which probably skewed

the findings:

* All of the books belonged to friends and neighbors of
the author in California. Thus many addresses, zip
codes, area codes, etc., had common values.

9 All of the books were kept for families and not individ-
uals. The effect of this in uncertain but because of
this entries in these books fell into four distinct
categories:

a The husband's relatives (characterized by similar
names, cities, states, zip codes, etc.).

a The wife's relatives (having the same characteristics
as mentioned above).

m Local friends (characterized by similar cities, state,
zip codes, telephone area codes and exchanges, etc.).

a Non-local friends (which had little in common, except
perhaps the military in many cases).

All of the families had at least one member in the armed
forces This seemed to introduce many acronyms and
abbreviations which are probab3.y Iot very common in
civilian spheres. This T robabl also accoanted for a
larger than usual number of "non- local friend entries."

9'



B. METHOD OF ANALYSIS

Each of the books was recorded into a file of its own in

a fashion which changed it as little as possible from the

original. Non-alphabetic and graphic symbols were repre-

sented by their closest ASCII equivalent, if there was one.

Otherwise an alternate such as "a" was chosen. Statistical

analysis was performed on these files but is not included

because it included lower-case letters and a large number of

spaces (used for formatting). It was felt that these condi-

q tions made these first sets of files inappropriate for use

with the PDBMS.

After the above files had been created, the fVles were

then copied to another set of files. In transferring the
data, all lower-case letters were zonverted to upper-case

and multiple spaces were removed. Tables VIII, X, XI, XV,

XVI, and XVII present the results of the analysis of these

files.

Finally this second set of files was copied to a *hird

set using a transformation which was designed to reduce the

skewedness of the letter and digit distributions. This was

done at a time when it had not yet been decided not to use

text compression. Many text compression techniques require

knowledge of the distribution of the symbols. It was hoped

that something close to the letter listribution of standard

English would be obtained. The tables which use the laoel

"After" reflect the data gained from analyzing this last set

of files. The distribution of the letter frequencies for

English were gotten from ref.rence r 14] . What follows are

the rules applied to the second set of files to produce the

third set. They are listed in the order in which they were

applied.

* Remove all redundant surnames.

95



AD-A12i 894 DESIGN AND IMPLEMENTATION OF A. PERSONAL DATABASE 2/2
r MANAGEMENT SYSTEM(U) NAVAL POSTGRADUATE SCHOOL MONTEREY

CA P L JONES JUN 82

UNCLASSIFIED F/G 9/2, N

MENOMONEEhIND



160

- 4

.1 

16.

rnn u___1.8

I 2= 
'*'- " +

MICROCOPY RESOLUTION TEST CHART
NATIONAL GURE AU OF STADOARD -163- A



* Remove all redundant city names for cities in the same
state. Any form of the name is removed (including
abbreviations) leaving the longest form.

* Remove all redundant zip codes.

- Remove all redundant telephone exchange numbers within
the same area code.

* Remove all area codes and state names.

* Remove the first three diaits of each zip code
remaining. Thpse digits in i~ate the post o ficels
qeoqrap hal reqion (t e .first diqit) ad .major city or
is ributi.on point (seonod and third digits).

The data in the first and second sets of files, though

obviously address book data, could not be used as a repre-
sentative sample of the "average" American address book.

For example, 310 (6 percent) of the wordds in the address

books refer to the states of California, Maryland, North

Carolina, New York, Virginia, and Washington. This would

probably serve as a poor basis for predicting the contents

of the address book of someone living in Chicago. For this

reason the above transformation was used in an attempt to

remove the influence of family names and geographical loca-
tions from the data yielding a sample more representative of

an "average" address book. Because the PDBBS is not

designed to handle only one specific person's information,

an average address book was needed in order to determine the

utility of algorithms and data structures. If the address

books had been found to contain almost no redundancies, then

the idea of using a DB dictionary probably would have been

dis carded.

96



* 1.

C. RESULTS OF THE ANALYSIS

In the tables appearing in this appendix, the words

"wordd," "char," and "punctuation" are used to connote the

definitions ascribed to them in Table I. The word "char-

acter" is used to mean all printing ASCII characters and the

space. All percentages, except those in Table I, reflect

the percentage of AU characters.

The difference between the number of unique vordds

in Tables VIII and IX is a result of the reduction of zip

codes to their last two digits. The differences are equal

to the number of unique zip codes. Also notice that the sum

of the unique wordds in the four books is not equal to the

number in the total column. This is because the total shown

iLs the number of unique wordds in all four books as a whole.

Lastly, the reduction of the number of characters includes

not only those chars in the deleted vordds, but also the

punctuation following the ends of and between the wordds

deleted during the creation of the third set of files.

2. Jr.g LuaZtk

Table X indicates that the PDBNS, as it is designed,

is not as efficient with memory, when compared to a system
which simply inserted plain text (i.e., did not use a DB

dictionary, etc.). Between the DB dictionary ard the

logical records, every unique wordd in the PDBNS requires at

least nine bytes (seven for the DB dictionary entry and two
in the logical record). Vordds which are duplicates of

wordds previously entered into the PDBAS require five bytes

(three in the DB dictionary used for the field ID and the

pointer to the physical record, and two in the logical

record used for the first letter of the wordd and the

97



.'.

TABLE VIII

General Statistics- Before

Book 1 Book 2 Book 3 Book 14 Total I

Records 80 129 88 111 408

Fields 340 472 346 350 1508

Characters 6173 8409 5908 6248 26738

Chars 50149 6639 4809 5163 21660

Vordds 1119 1579 1134 1129 4961

Unifqe 749 958 740 723 13170
Vor~~ a___I........i1

T ABLE II

General Statistics After

Book 1 Book 2 Book 3 Book 4 Total

Records 80 129 88 111 408

Fields 340 472 346 350 1508

Characters 5502 7053 4928 5134 22617

Chars 4385 5325 3834 4069 17613

'ordds 1008 1329 941 925 42031

Uni que 722 912 704 678 3016Worlds___

wordd's ID). Using the nuabers in Table 1, the average

vordd length in the four books is 4.37 chars. In order to

be better than or equivalent to a system using plain tezt in

98



T ABLE I
ordd Length Distribution

Vordd Frequency
Length

1 106.25
14.67

.- t 18.93
800 16.13

5 936 18.87

6 '427 61
7 3418.0

8 243 4.90
9 116 2.34

10 61 1.23

11 36 0.73
_1_ _8: 3

records requires highly redundant information. The four

books together require approximately 34K bytes of storage as

plain text (this includes administrative overhead). However

this does not include the storage required for indices

needed to provide random access; only sequential access is

possible with only 34K bytes of storage. Based upon the

data derived from the four books, the PDBHS woul.a require

approximately 45K bytes to store the same information (27K

bytes for the dictionary and 18K for the files; again

including administrative overhead). However, unlike the 341K

bytes above, this 415K bytes includes storage dedicated to

providing random access.

99

: .:. .: .-.." .- , ,, ... . . : . - , . - . . . - . . .,.



I~EA 0 I 114'p~ 1.NC~O~ 1~W~ IO

mpg-IO flw f-" CM1-44 N IOICW4

0 - -- 4MV -f N W- -

0 I ~ 0tfl WO

0d IV-~~uDFm
MW0 Iw~-wa"

%.J4W&%D C","I(q9 Inf a 4 %DA c%

@1100



go#**@* of f@**.. t'o@ 'o to g@* ":~

Aj ( 4 (4rIN 4

I'." 4c 1c I ene"D

0 1
,'4O4* fPW-f" o~a ~ -

Ad *"C0(i'C C fl"wDcO c u 40%4Oow4 ti @ngtD
* V @~'U~ O~(1 C~'OONI0

410
to 0M aea I ~vcun" IMDO

A N
*~0020qti 94 Vu f (fM"McUvngilQ ' *w

Ad I-= o. Me%' r~#@b~*t 0flO#

ad 0,m I & 0 0 0 4

Ad NeqUirn eewh Of""kno4wl (49 %D'- qf-- E'
I 0fw0tf -l#

Vo ~~%O 0f~ ~~0N4'W

101



1 -c t c q q I 
-~q 

s o s o ,

gab - I- to-. 
mom

o. ~ I n c I n M 0

ItI

0 0 - V q ,00

40O~0re0'0M 
I~ ~ '

doo of I4

41 
4 A I

- 4n -
-nr p w 0 O f

0 M"swv ~r-

0 I- w -q - W

.4W I102



0 * Sl gimimiw **f.eel

- m ri 'Wnt

91 0Cf 6040f Ii 0 0 OC 4@
410 0 0 oaI-00 04

IDCcfa 00 4WD 40

.00. j ~iim -0 r

0

aa

f419- OW 00r%1

o~~~~O V m +eC

410



3. Q ,t i. al, DA ,aq

Tables XI. XII, XIII, XIV, Xv, and XVI present data

on the symbols found in the four address books. Notice from

Table XVI that it is obvious that these books are nt

samples from normal English text. For the most part, the

books are "fairly uniform" in their use of letters and
digits; this is not the case with punctuation. Book 1 is

distinctive in that it is the only one where a dollar sign,

colons, and semicolons appear. Book 2 uses an unusually

large number of "other" punctuation characters. These punc-
tuation characters are those which were used to represent

graphic, non-alphabetic symbols. Book 4 is unlike the

others in that it uses the plus sign as the abbreviation for
the word "and" whereas the other books use the ampersand.

Book 4 also contains a relatively small number Df paren-

theses, dashes, periods, and "others" compared to the other

books.

4. Inta LSY4U

Tables XVII and XVIII show the distribution of all

alphabetic wordds in the four books as a whole by their

first letter. What is shown in tho "Bost Frequent Wordds"

column are those wordds which account for approximately 30

percent of the total number of wordds starting with the
letter in the corresponding first column. Notice that

surnames, cities, and states do not appear in Table XVIII

because all but one occurrence of them remains in the third

set of files. One noticeable exception is the towns of

Westminster. The wordd appears in Table IVIII because three

different towns occur in the four different books

(Westminster, California; Westminster, Colorado; and

Westminster, Haryland). As proof of the skewed nature of

information notice the large number of occurrences of the

104



TA BLE ZVI

Compaisoa with Standard English

Before After

Observed Expected Observed Expected

A 41800 322.76 332.25 273.98
B 107.75 60.52 95.25 51.37
C 180.25 121.04 131.50 102.74
D 150.:75 161.38 131.75 136.99
2 1410 5214.49 362.50 44.22

F 48.50 80.69 40.75 68.50
G 68.50 60.52 58.7 51.3
a 1 1fl1l0 145-47

S 33.2 20. 17 33.00 17.12

K 66.25 20.17 - 514.25 17.12
L 2314.0 141.21 20025

I 117.2 112.7
H 114 .121 04 :25 119.87
N 294:.$ 282:142 246:00 239.73
0 286.25 322.76 249.00 273.98

P 81.50 80.6 73.25 68.50
Q 3.0 10.09 .75 8.56

1 "330.75 262. 22 .61
S 241.7 242.7 04: 20 .49
T 234.25 363. 1 200.00 308.23

U *84.75 121.04 77.00 102.74
V 71.00 40.35 63.50 314.25

7j 5 60.52 9.2 51.37
""2.0 20.17 17.12

Y 3.29 80.69 8.75 68.50
z 11.50 10.09 9.25 8.56

Xt Statistic Before: 466.89

X2 Statistic After: 387.44

abbreviations for the states of California (CA), North

Carolina (MC), New York (NY), and Washington (VA). The

large number of P's and O's can be accounted for by the

large number of occurrences of the uord "P.O." as an abbre-

viation for 2out 2ffice.

105



These two tables also support the premise that these

address books are not from normal English text. The English
words "THE," "OF," and "AND" make up 13.75 percent of all
vorls in English text. These same words make up less than

one percent of the vordds in the address books. In fact,
less than one percent of the vordds in the four address
books are the 46 most frequently occurring words in the
English language. These 16 words account for more than 41
percent of all vords in English text C15].

106



TABLE XVII

Initial Letters of wordds - Before

No of Total I Most Frequent
Unique No. of| Wrdas CountVo W r ds  Wordds I

71 221 1VE 47AVENUE 18
APT 18

B8 1214 281 BOX 68
*IBILL 14

- jBELLMORE J 11
€C 129 349 CA-8

C 18
CO 1

_.__.f CT 1 10

D 71 179 DR 29
DRIVE 11
D 7
DAVE 7
DAVID 7

E G42 89 E 19
EVANS 10

F 48 90 FPO 7
F 5
FL 5
FRANKLIN 5

GI 59 78 GROVE 6
IGARDEN5 IGEORGE

GARY 3
H 73 103 - HENRY 14

HOME
HARRY 3
HELEN 3

I 21 36 IN 5
INC 5
I 3

3 514 1-28 JOHN 114
- 12

KENNETH 5
72 ~KY 5

L 2 35 LANE 1
LINDA 1Q

LOSISVILLE
___ ~LT __ _ _

107



TABLE XVII

co ntin ued

No of Total Most Frequent
Unique NO.of Wordis Count"- or ds wor Idcs

109 289 MRS 36MR 24
MD 19

1ASS 14 5
•I.I - OREHEAD 12

N I 56 22 NC 51
NY 51
N 18
NEW 17
NORTH 13

0 33 109 0 41
OAK 10

P 78 175 p 37
PITTSFORD 10
PAUL 9

Q I 3 3 _

R 84 206 RD 40
RT 16
ROAD 12

S 133 340 ST 47

I 27
SAN 17
SEATTLE 17STREU 17

T 36 72 TOMISSER 8
TEXAS 4
TOE 4
TZ 4

U 13 21 UNCLE 3

v 214 57 VA 9
VALLEY 8
VIRGINIA 5

. 52 165 VA 54
v 13

. 0 0

- 5 29 YORK 9

z 7 8 ZUOA 2

108

.°I -° - o .



TABLE XIII

Initial Letters of Vordds - After

No, of Total Most Fre uent
UnNo. of ordis Count
eorfds nordds

A 71 203 AVE 47
AVENUE 18
APT 18

B 124 246 BOX 68
BILL 14
BOB 5

C 129 23$ C 18".CO 11COURT 
7

CI! 6
CT 6

D 71 167 DR 29
DRIVE 11
D 7
DAVE 7
DAVID 7

B 42 78 ' 18
EAST 4
ELIZABETH 4

F 48 74 5
FRANKLIN 4
FEBRUARY 3

G 59 69 GEORGE 4
GARY 3

H 73 97 HENRY 4

HARRY 3
HELEN 3

I 21 36 IN 5
INC 5
I 3

3 54 127 JOHN 14
J 12
JIm 12

K 36 59 KAREN 5
KENNETH 5
KATHY 3
KATIE 3

L 72 113 LANE 11
LINDALT
LL 4

109



.- -.-. *,*• o , .. . - - - - - .,. . ..A--. -. .

TABLE XVIII

co ntin uod

No, of Total Most Frequent
Unique No. of ordds countIlordds odds

109 245 MRS 36
MR 24
M 7
MARY 7
MIKE 7

N II 56 120 N 18
iNORTH 13

o 33 101 0 41
- OAK 10

P 78 157 P 37
PAUL 9
PARK 7

Q 3 3

I 84 197 RD 140
RT 16
ROAD 12

S 133 302 ST 47
S 27
STREET 17
SMITH 6
SUE 6

T 36 57 TOM £4
- _____THE _ ___ 3j

U 13 18 UNCLE 3

V 13 48 VALLEY 5
VISTA 14

U 52 98 v 13
W EST 6
WESTMINSTER 3±1 0 0 _ _ _ -

T5 10

z 7 8 ZUHR

.

. 110



LIST OF RUPIRBICUS

Ablififl..0,199w

2. The FORTH Standards Team, Z1--2, FORTH Interest
Group, October 1980.

3. Handler, George "The R.CCgnition of Previous
Encountersp" AuigLI jgJLgjgs, Vol. 69, march-April
1981.

4, obley, David W. and Nagy, George. "Behavioral
Aspec o Editors - r Qin±2 3LU31. of the
AMCE Vol. 13,e 1o0 , *ahrc 141.

5. Heckel, Paul and Schroeppel, Richard. "Softvare tech-
niqu clan functions 4nd .dta into pocket-sized uC

MilEcat ons," hles.L2I1. DS31, Vol. 8, April 12,

6. lillians, Gregq and Beyers, Rick. "The Panasonic and
uasar Hand-geld Computers," U. Vol. 6, No. 1,
anuary 1981.

7. Horgan, Chris. "I Revolution in Your Pocket," jjf
Vol. 7, No. 4, April 1982.

8. Hirsch, 2. S. "Procedures of the Hunan Factors Center
at San Jose," INf U I . im l, Vol. 20, No. 2,
1981.

9. Stuart LaFarr. "LaFORTH," Isosesilnes of the 1980
FOUL lonference, FORTH Intere z uQoQ 98o.

10. Gifford David K. "Cryptographic Seali.ng for
Snorsa oecrecy and kuthentication-j . 1 !of the acm .2, o , a=

11. Be, . Z. . and LVPadula, L. J oS, CORA

12. Dell, 0. E. and Burke, L. k

111



7 - - - - -.- - -

"13. Kogged -Par M. "in Architectural Trail toThreaAed- oe 0Systems#" COSO.12E, Vol. 5,No* 3#

larch, 1982.

14. Kahn, DaTid. T" g t,.q, The Maclillan Company,
1967.

15. Montgomery, Edward B. "Bringin; Manual Input into the
20th Century: New Keyboard concepts," faut.e , Vol.
15, No. 3. larch 1982.

112



BIBLIOGRAPHY

Brodie, Leo. I.a EORfH1, Prentice-Hail, Inc., 1981.

Cassady John. 19-roj9a qy Sorc k~tjW, FORTH
Interest Group, Se-pre-Mr

Derick itch and Baker, Linda. gfOfl JA,
mountain Viev Press, Inc., 1982.

"FORTH From A to Z," l ]. i ..q q,.U. Vol. 12, go. 1, January
198 2.

Gray, Jim,. ,A22ogpgBd.Qt 12lctjapd~
Tandea TR 81.1, a Moputirs acorporate, IWOl.

Haydon Glen D. "Elements of a FORTH Data Base Design,"
FQT i ZfiSII U, Vol. Ill, No. 2, July/August 1981.

Heckel Paul. "Designing Translator Softvare," jjtjajng,
Vol. 26, 1o. 2, February, 1980.

Huffsan, David 1. "A Method for Construction of
Bin suata;Red~jncy Codes, Zrceln of the 1.1.E.P
Septemuer, 19 :s

James John S. NFORTH for Microcomputers," .jUj Notices
Vol. 3, so. 10, October 1978.

Kilbridge, Dave. "Forgiving Forget," J DIU.SU. Vol.
Il, No. 6, March/April 1981.

Laxon, Henry. "Techniques Journal: Ezecution Vectors," F
2U IO, Vol. III, 1o. 6, march/Apr 1 1981.

ayer. Richard Z. and Baysan Piraye. "PsychoJioqy of
alculator LangQu4es: A Friambvor for Describinq DifZe nes

in ers' Kno aqqe," QMIUta u of the IC3, Vol. 2 ,
go. 6, August a i.

a 2 I . aTeCt :prelon rechniques," Q eso
t (South AricaJ vVol* 1, g. 1, June .231

Raqidalt GoupFLao. .,-LO! L s~J~o  u1,t. FORTH

athe, Elizabeth D. and moore hale H. "The ORTH
Approach to Operating_ yse " £ .6 Proceeding o t e

Annual Conference, 197

113

. . . . . . .. -- . . . -;. - -- -. k .. , . . • _ ' . . . . . . : ,



Raghbtti,m Nassau K. "An Overview of Data Compressioni Tecnque, O L_, Vol. 14, No. 4, April, 1981.

L Reisner, Phyllis. "Human Factors Studies of Database Query
Langua es: A Survey and Assessment," g Surveys or
the ACC* Vol. 13, No. 1, March 1981.

Smith, Robe;t L. NsjZfQ7 9  .adg4 Go n-esrx (Version
1.2), Mountain View Press, 1781.

Zf George K. 2 v g a

1981ggf, Vol. I-Il, FORTH Interest Group,

1 .



INITIAL DISTRIBUTION LIST

, No. Copies

1. Defense Techlical Information Center 2
Cra Station
Atezan ia, Virginia 22314

2. Defense Logistic Studies Information Exchange 1
U.S. Army Logistics Minageent Center
Port Lee, virginia 23801

3. Library, Code 0142 2
!-i Monterey* Ca ro nia 93 40

4. Department Chairmn Code 52 2
Depa tent of Compae r Science
Naval Postarif atb School
Monterey, Ca fornia 93940

S. Captain Peter L. Jones .4
arnoe Cos nTal Desi gn and

al A ngAc viy
Barnn COr Dalr OP! l nd Zdacation Command0mantlce, flrg9n; "21311

6. Associate Professor Dushan Z. Badale Code 52ZD 3
Departent. of Computer S ence
Naval Po0st I rs4at School
Monterey, California I39C0

7. Professor Goidon ff. Bradlgy. Code 52BZ
Dp ntment oa Conp uts Sience

as~ ~ 8.. at Schn 0
Monterey* aorna 0

8. Lieutenant Commander D. Shoop
Departpnt of Coxn;; her Science

ne ue ellen yqver Ittug Pennsy vna 715213

9. Captain soedliono
n spullahtalto t' SubcOtO10

Jaiarta-Pusat, I ndone lsia

10. Lieutena t Ricardo Arana * 1

C Itral e rocessiento e Dats
5.nwlter lo de Ma rina
Lm -Peru

115



11. Lieutenant Richard T. Holdcroft
Deirtent Read Courso
Surface Warfare Officor Scool
"ewport, Rhode Island 02840

12. Lieutenant Colonel Paul A. Fritsche (Retired)
16 Cottonwood Lane
Pittsford, Now York 14354

13. Lieutenant Eduardo Bresani
II Cexal 4eProcesaciento do Dates
81ainsterio isar na
Lisa - Peru

116


